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POPULARVETENSKAPLIG SAMMANFATTNING

Datorer paverkar alla aspekter av det moderna samhéllet och de har djupgaende férédndrat
satten vi arbetar och kommunicerar pa. Algoritmer utgor den abstrakta arbetsbeskrivning
for en dator som forklarar hur data ska bearbetas och vilket resultat som ska genereras.
Malet med berdkningskomplexitet &r att studera méangden resurser som kravs for att utfora
berdkningar: Hur mycket tid krdver en viss berdkning och hur mycket minne behéver vi for
att utfora den? For att studera algoritmer anvinder man inom berdkningskomplexitet en
abstrakt berdkningsmodell istéllet for specifik hardvara. Abstraktion &r nyckeln har - den
gor det mojligt att fokusera pa generella algoritmiska idéer istéllet for oviktiga detaljer.
Detta underldttar anvindningen av matematiska metoder och ger generellt tillimpbara
resultat.

Algoritmer for ett givet problem kan ha mycket varierande prestanda och ibland kan enkla
idéer betydligt minska tidsatgangen. Lat oss fundera kring problemet att soka efter en
persons adress i en adressbok. Vi tar namnet "Mats Matsson” som exempel. Posterna antas
vara sorterade efter efternamn sa vi kan borja fran forsta sidan och kontrollera sidorna en
efter en tills efternamn som boérjar med ”M” hittats, sedan de som bérjar med "Ma” och
sa vidare. En alternativ metod &r att 6ppna boken ungefir i mitten: om efternamnen pa
mitten av sidan borjar med "K”, vet vi att "Mattson” kommer att visas efter det, och vi kan
undvika den foérsta halvan helt. I en bok med 1000 sidor dar Mats Matsson finns pa sida 600
minskar da sokningen fran 600 sidor till 100 genom att borja fran sida 500. Vi kan tillimpa
metoden igen pa den andra halvan av 500-sidorsboken, sedan igen pa den 250-sidiga halvan
av den, och sd vidare. Pa detta sédtt kan vi hitta vilket namn som helst i den 1000-sidiga
boken efter att ha granskat cirka 10 sidor. Den héar idén gor det mojligt fér datorer att soka
i databaser med miljarder poster och himta information inom néagra sekunder.

Sokuppgiften ovan indikerar att vissa berdkningar kan utféras med effektiva algoritmer.
Naturligtvis finns det problem for vilka vi inte kénner till om det finns nagon effektiv algo-
ritm. Ett exempel ar att planera en kortaste rutt for en leveransbil med flera destinationer;
detta problem brukar kallas handelsresandeproblemet. Kortiden for de snabbaste exakta
algoritmerna man kénner till for handelsresandeproblemet vixer exponentiellt med antalet
destinationer. Detta gor dem mycket langsamma och i praktiken foredras heuristiska 16s-
ningar som inte garanterar optimalitet. Men ar det bara en tidsfraga innan vi upptécker
nagon smart idé for att paskynda &ven denna berdkning, eller finns det nagon inbyggd sva-
righet som inte kan kringgas? Ett av de viktigaste resultaten inom datavetenskapen ger
ett svar pa denna fraga. Cook och Levin upptéckte att ett grundldggande problem inom
logik (som kallas SAT) &r universellt i den mening att en effektiv algoritm fér SAT ocksd
skulle ge effektiva algoritmer for en generell klass av problem. Senare visade Karp att 21
framstdende problem (bland annat handelsresandeproblemet) fran méanga delomraden inom
datavetenskapen ar ekvivalenta med SAT - att 16sa ett av dem effektivt skulle ocksa losa
dem alla. Man har inte kunnat bevisa att SAT inte har effektiva algoritmer (detta ar det
berémda P=NP-problemet) men denna teori forklarar de resultatlgsa anstrangningarna att
visa att SAT (och en mingd ekvivalenta problem) ar svira. Det ar litt att se de praktiska
konsekvenserna av effektiva algoritmer, men dven att utesluta saidana algoritmer har mycket
viktiga tillampningar. Faktum &r att hela faltet med modern kryptografi och siker kommu-
nikation bygger pa antagandet att ingen algoritm effektivt kan bryta de krypteringssystem
vi anvander, t.ex. nir vi skickar vara kreditkortsuppgifter till en onlinebutik.

Cook-Levins resultat och Karps arbete medfor att vissa problem ar berdkningsmaéssigt svara
men fortfarande finns naturligtvis ett behov av att kunna l6sa sddana problem i praktiken.
Vi kan inte forvanta oss effektiva algoritmer som loser alla indata till dessa problem men
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det kan finnas algoritmer som effektivt loser vissa klasser av intressanta indata. Teorin
om parameteriserad komplexitet, &ven ként som multivariat analys av algoritmer, ger oss
verktyg for att studera detta. Den grundlaggande idéen &ar att mata algoritmers kortid i
termer av en eller flera parametrar tillsammans med indatas storlek. Detta gor att vi kan
separera olika faktorer som paverkar algoritmens kortid och dirigenom studera den pa ett
djupare plan. Om vi gar tillbaka till handelsresandeproblemet kan vi nu bérja analysera
hur olika egenskaper hos indata (till exempel kartans storlek och antalet destinationer)
paverkar en algoritms kortid.

Denna avhandling behandlar multivariat analys av villkorsproblem (constraint satisfaction
problems pad engelska och med forkortningen CSP). Ett Sudoku-pussel dr ett bra exempel
pa ett sddant problem. Har har man en 9x9-bridda uppdelad i nio 3x3 rutor. Malet ar att
placera siffror fran 1 till 9 i bradans celler sa att varje rad, varje kolumn och varje 3x3 ruta
innehaller alla olika siffror. Dessutom innehaller vissa rutor redan siffror, och malet ar att
fylla i de aterstaende, tomma cellerna sa att den resulterande bradan uppfyller ovanstaen-
de begransningar. CSP ar en generalisering av detta: vi fir en uppséttning variabler (som
tomma celler), en uppsittning tilldtna virden (har 1 till 9) f6r varje variabel och en upp-
séttning begransningar, och malet &r att tilldela véarden till variablerna (fylla i tomma celler
med siffror 1 till 9) s& att alla begrédnsningar ar uppfyllda. Medan Sudokus vanligtvis ar
utformade for att ha losningar, har vissa CSP:er det inte. I sd fall kan man istéllet vilja
hitta en tilldelning av viarden som bryter si fa begransningar som méjligt. Detta generella
problem kallas MinCSP.

Tyvarr dr majoriteten av intressanta MinCSP:er berdkningsmassigt lika svara som SAT
sa vi forviantar oss inte effektiva algoritmer fér dem alla. I denna avhandling studerar vi
MinCSP ur ett multivariat perspektiv. Den relevanta parametern ar antalet villkor som inte
uppfyllts (tdnk pa det som en kostnad vi maste betala for att bryta dessa begrdnsningar—
da vill vi betala s lite som mojligt). Till exempel ar det ibland omdjligt att utforma ett
schema som undviker alla konflikter. D& ar det onskvirt att utforma ett som minimerar
antalet konflikter. Detta allménna problem av detta slag kallas MinCSP.

Vi vill utforma effektiva algoritmer for specialfallen av problemet nér parametern &r liten. I
avhandlingen underséker vi enkla tidsméssiga, intervall-, linjdra och likhetsbegridnsningar.

o Enkla tidsmdssiga (STP) och intervallbegrinsningar anvinds foér att resonera om tid,
t.ex. i planerings- och schemaldggningsapplikationer. STP begransningar tillater an-
vindning av numeriska véirden (t.ex. kan de uttrycka pastdenden som ”Féreldsningen
ska borja och sluta mellan 8:15 och 11:00”), medan intervallbegrénsningar ar utfor-
made for att uttrycka kvalitativa relationer ("Den forsta sessionen ska schemaldggas
under den andra sessionen for att ha en gemensam fikapaus efterdt.”)

o Linjdra ekvationer ar av grundlaggande betydelse inom matematik, teknik och data-
vetenskap. Nagra av de dldsta kdnda algoritmerna var utformade for att hitta 16s-
ningar till system av linjidra ekvationer. Exempel pa tillampningar finns i antika
kinesiska matematiska texter. Metoden som lars ut i dagens algebra-klasser introdu-
cerades av Isaac Newton och systematiserades for datorer av Carl Friedrich Gauss
ar 1810. Vid den tiden var datorer méanniskor som utférde berdkningar for teknik-
projekt, men i stort sett anvinds samma metod fortfarande i digitala datorer idag.
Denna metod kan hitta l6sningar for konsistenta ekvationssystem eller rapportera
att ekvationerna ar inkonsistenta. Vi studerar problemet med att berdkna losningar
for nastan konsistenta system, dvs. system som blir konsistenta efter att ha tagit
bort nagra ekvationer.

o Likhetsbegrinsningar kan anvindas for att koda talrika egenskaper, t.ex. anslutning
i natverk, likhet och olikhet, vara vanner pa sociala medier, osv. Fragan vi stéaller
kan forstas pa foljande satt: om vi har ett stort nétverk och nagra anslutnings- och
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avskiljningsbegransningar som inte ar uppfyllda, kan vi gora nagra reparationer pa
nétverket for att uppfylla begransningarna?

Vara resultat ar dikotomi-teorem: for varje specialfall utformar vi antingen effektiva algorit-
mer for instanser dar parametern ar liten eller bevisar osannolikheten att sadana algoritmer
existerar (likt snabba algoritmer for SAT). Fran ett bredare perspektiv framjar de var for-
staelse av effektiv berdkning inom omradet for villkorsproblem och optimeringsproblem.



ABSTRACT

In this thesis we study the computational complexity of MinCSP - an optimization version
of the Constraint Satisfaction Problem (CSP). The input to a MinCSP is a set of variables
and constraints applied to these variables, and the goal is to assign values (from a fixed
domain) to the variables while minimizing the solution cost, i.e. the number of unsatisfied
constraints. We are specifically interested in MinCSP with infinite domains of values.
Infinite-domain MinCSPs model fundamental optimization problems in computer science
and are of particular relevance to artificial intelligence, especially temporal and spatial
reasoning. The usual way to study computational complexity of CSPs is to restrict the
types of constraints that can be used in the inputs, and either construct fast algorithms or
prove lower bounds on the complexity of the resulting problems.

The vast majority of interesting MinCSPs are NP-hard, so standard complexity-theoretic
assumptions imply that we cannot find ezact solutions to all inputs of these problems
in polynomial time with respect to the input size. Hence, we need to relax at least one
of the three requirements above, opting for either approximate solutions, solving some
inputs, or using super-polynomial time. Parameterized algorithms exploits the latter two
relaxations by identifying some common structure of the interesting inputs described by
some parameter, and then allowing super-polynomial running times with respect to that
parameter. Such algorithms are feasible for inputs of any size whenever the parameter
value is small. For MinCSP, a natural parameter is optimal solution cost. We also study
parameterized approximation algorithms, where the requirement for exact solutions is also
relaxed.

We present complete complexity classifications for several important classes of infinite-
domain constraints. These are simple temporal constraints and interval constraints, which
have notable applications in temporal reasoning in Al, linear equations over finite and
infinite fields as well as some commutative rings (e.g., the rationals and the integers),
which are of fundamental theoretical importance, and equality constraints, which are closely
related to connectivity problems in undirected graphs and form the basis of studying first-
order definable constraints over infinite domains. In all cases, we prove results as follows:
we fix a (possibly infinite) set of allowed constraint types C, and for every finite subset I'
of C, determine whether MINCSPT', i.e., MinCSP restricted to the constraint types in I, is
fized-parameter tractable, i.e. solvable in f(k)-poly(n) time, where k is the parameter, n is
the input size, and f is any function that depends solely on k. To rule out such algorithms,
we prove lower bounds under standard assumptions of parameterized complexity. In all
cases except simple temporal constraints, we also provide complete classifications for fixed-
parameter time constant-factor approximation.
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Introduction

In this chapter, we frame and motivate the work comprising this thesis in the
context of computational complexity, parameterized complexity, constraint
satisfaction and approximation algorithms. Formal definitions and technical
details are deferred to Chapter 2. We assume familiarity with the basic notions
from graph theory (e.g., what is a vertex, an edge, and a path).

1.1 Computational Complexity

We start with two informal examples of computational problems: CLIQUE and
VERTEX COVER. These two will be our protagonists throughout the chapter.

Imagine you are working on designing a new product for your favourite in-
dustry. The product consists of k parts, and you have long lists of choices for
each. Furthermore, for every pair of choices, you know whether they are com-
patible or not. Can you determine whether a design is possible, i.e. whether
there is a choice of k parts that are pairwise compatible? This problem can
be modeled in graph-theoretic terms: create a vertex for every choice, and
connect two choices by an edge if they are compatible. Now the goal is to
find a set of k vertices in the resulting graph such that all pairs of vertices are
edge-connected. Such a set is called a clique of size k.

CLIQUE

INSTANCE: A graph G and an integer k.
QUESTION:  Does G contain a clique of size k7

Now consider a second scenario: your company is hired by the city council
to monitor car traffic on the major roads. The city can place an omnidirec-
tional (360-degree) camera at any junction, and with this camera you can
monitor all roads meeting at this junction. Can you monitor all major roads
by placing k cameras in a strategic way? This problem can also be modeled
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in graph-theoretic terms: create a vertex for each junction (i.e., each place
where a camera can be installed) and add an edge between two vertices if the
corresponding junctions are connected by a major road. The goal is to find a
set of k vertices in this graph such that every edge has at least one endpoint
in the set, i.e., every major road is monitored by at least one camera. Such a
set is called a vertex cover of size k.

VERTEX COVER

INSTANCE: A graph G and an integer k.
QUESTION: Does G contain a vertex cover of size k7

Computational complexity theory studies the amount of resources (e.g.
time, space, or communication) required to solve computational problems,
like CLIQUE and VERTEX COVER. Our main focus will be time complex-
ity. The problems similar in their computational complexity are grouped into
complezity classes. The main technical tool used to relate complexity of com-
putational problems is reductions, which are procedures translating instances
of one problem into instances of the other. Importantly, the reductions are
subject to the same resource limitations as the problems in the class. Pro-
viding a reduction from one problem to another establishes that solving the
latter problem is at least as hard as solving the former. Sometimes there are
reductions in both directions, which imply that the problems are equivalent.
For instance, we will see that CLIQUE and VERTEX COVER are equivalent un-
der certain efficient reductions. Thus, if we can solve one of them efficiently,
then we can solve both.

The most prominent complexity classes are P and NP. The first class
contains problems for which solutions can be found in polynomial time with
respect to the input size, while the second one contains problems for which
solutions can be wverified in polynomial time. Our example problems — CLIQUE
and VERTEX COVER — are both in NP: if somebody proposed a set of k ver-
tices claiming that this is a clique or a vertex cover, it is straightforward to
verify whether the provided set is a solution or not by looking at the edges
of the graph. It is quite apparent from formal definitions that P is a subset
of NP, i.e. finding a solution is no harder than verifying one. The widely
believed hypothesis P+NP asserts that the inclusion is strict, i.e. there exist
problems for which verifying a solution is easier than finding one. The P ver-
sus NP question is one of the central challenges in mathematics, and one of the
six Millennium Problems [36]. Cook [18] (see also [19]) and Levin [46] inde-
pendently discovered NP-complete problems, which are, informally speaking,
the hardest problems in NP. More specifically, these are members of NP such
that every other problem in NP reduces to them in polynomial time. The first
testament to the explanatory power of NP-completeness is the seminal work
of Karp [38], showing that 21 seemingly unrelated computational problems
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Figure 1.1: A clique in a graph and a vertex cover in its complement.

prominent in their respective application domains are all NP-complete. The
book by Garey and Johnson [33] contains many more classic examples.

Example 1.1. CLIQUE and VERTEX COVER are both featured on Karp’s
list. A reduction from CLIQUE to VERTEX COVER takes a pair (G,k) of a
graph G and an integer k, and returns a new pair (G, |V (G)| - k), where G
is the complement of G, i.e. a graph with the edges and non-edges flipped,
and V(G) is the set of vertices in G. The correctness follows by observing
that a subset X of vertices in G is a clique if and only if every non-edge of
G, or, equivalently, every edge of G, has one endpoint in V(G) \ X. The
same reduction and proof also work in the other direction, so we establish
that these two problems are polynomial-time equivalent. See Figure 1.1 for
an illustration. <

The theory of NP-completeness explains hardness of a wide range of com-
putational problems, revealing a deep common reason behind it. However,
NP-completeness is not a final verdict — we still need to solve instances of
hard problems in practice. For this, it is valuable to have a more fine-grained
understanding of the relative complexity of computational problems. We be-
lieve that NP-complete problems are hard, but it is also useful to know that
some are harder than others. Parameterized complexity [26] provides us with
tools to obtain such an understanding. It offers a multivariate approach to-
wards algorithm analysis: instead of measuring time complexity solely as
a function of the input size, parameterized complexity suggests also taking
some structure of the inputs into account. Two quintessential problems in
this branch are VERTEX COVER and CLIQUE parameterized by the solution
size k. Let n denote the size of the input instance. A simple branching algo-
rithm can solve VERTEX COVER in O(2"-n) time, while the best algorithms
for CLIQUE runs in n®®) time. For small values of k, e.g. k=15, and moder-
ate values of n, an algorithm with running time 2¥ - n is reasonable, while n*
is completely infeasible. Problems that can be solved in f(k)-n®® time for
some computable function f that depends only on the parameter k are called
fizxed-parameter tractable. In contrast to VERTEX COVER, we do not expect
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algorithms with such running time for CLIQUE, and the hard problems for
parameterized complexity are those at least as hard as CLIQUE.

1.2 Constraint Satisfaction Problems

The topic of this thesis is parameterized complexity of constraint satisfaction
problems (CSPs). An instance of a CSP is a set of constraints applied to
(possibly overlapping) subsets of variables. The problem asks to check if
there is an assignment of values to the variables that satisfies all constraints.
The computational problem CSP(T') is defined by a constraint language T,
which restricts the domain of values for each variable as well as the kinds
of relations that the constraints can impose on the variables of the instance.
The framework of CSP is very expressive and allows modeling a wide range
of computational problems.

Example 1.2. 3-SAT is the problem of deciding whether a propositional
formula in conjunctive normal form, i.e. a conjunction of ternary disjunctive
clauses is satisfiable. We can model it as a CSP with variables being the vari-
ables of the formula and clauses imposing ternary constraints. For example,
a clause (z vy V —z) can be viewed as a constraint imposed on (x,y,2) that
allows every assignment except (0,0,1). <

Example 1.3. A system of linear equations over a ring R can be cast as
an instance of CSP with domain R. An equation az + by + cz = d for any
a,b,c,d € R is a ternary constraint saying that the assignment to (z,y,z)
should be equal to one of the triples (o, 3,7) € R® such that aa+bB+cy=d. <

Example 1.4. 3-COLORING is another problem on Karp’s list. An instance is
a graph, and the question is whether every vertex in the graph can be assigned
one of three distinct colors so that no pair of adjacent vertices receives the
same color. We can cast it as a CSP with domain {1,2,3} and I" containing
binary relation #. Intuitively, an edge wv in the input graph imposes the
constraint u # v on the colors assigned to the vertices u and v. Y

Example 1.5. DIGRAPH ACYLICITY asks, given a directed graph as input,
is it acyclic, i.e. does it contain no directed cycle? The problem can be
equivalently stated as follows: given a directed graph as input, does it admit
a topological ordering, which is a mapping = that assigns (e.g. rational)
numbers to the vertices so that for every arc (u,v), we have m(u) < 7(v)?
This suggests casting DIGRAPH ACYLICITY as a CSP with domain Q and
constraint language T' = {<}. “

From the theoretical point of view, CSPs form a nicely behaved subset of
NP. More specifically, even though the Cook-Levin Theorem provides us with
a way to classify problems as tractable (in P) and intractable (NP-complete),
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we cannot hope for a dichotomy: Ladner’s Theorem [45] asserts that if P=NP,
there are problems of intermediate complexity, so we cannot classify every NP
problem as polynomial-time solvable or NP-complete. On the other hand, Bu-
latov [9] and Zhuk [57] independently proved a dichotomy theorem for finite-
domain CSPs, confirming the celebrated conjecture of Feder and Vardi [29]
and the algebraic conjecture of Bulatov, Jeavons and Krokhin [8]. As a bonus,
the tractability criterion for CSPs is decidable and algebraically meaningful:
informally, the fact that a finite-domain CSP admits an efficient algorithm is
witnessed by certain symmetries of I', and the lack of these symmetries im-
plies NP-hardness. For example, suppose the domain of I' is an Abelian group
with operation +, and the following property holds: if we take any three as-
signments (a1, ...,a,), (b1,...,b,) and (ci,...,c,) that satisfies an instance
I of CSP(I'), then the assignment (dy,...,d,) defined as d; = a; — b; + ¢;
for all 1 < i < n, also satisfies I. Then CSP(I") is solvable in polynomial
time by a variant of Gaussian elimination. The constraint language of linear
equations from Example 1.3 admits such a symmetry, while the language of
3-COLORING from Example 1.4 does not.

1.3 Optimization with Constraints

Define the cost of an assignment to an instance of CSP to be the number of
constraints it does not satisfy. In the optimization version called MINCSP,
the instance is a pair (I, k), where I is a CSP instance and k € N is a budget.
The problem asks if I admits an assignment of cost at most k. MINCSP
generalizes CSP (which is a special case with k = 0)

Example 1.6. Many optimization problems can be phrased as MINCSP.

1. Let Q be the domain of T" and binary < be the allowed relation. MINCSP(T")
is equivalent to DIRECTED FEEDBACK ARC SET that asks to delete k arcs
from a directed graph to make it acyclic.

2. Let {0,1} be the domain of T and binary disequality (#) be the allowed re-
lation. CSP(I") is equivalent to checking if a graph is bipartite. MINCSP(T")
is equivalent to MINIMUM BIPARTIZATION that asks to delete k edges from a
graph to make it bipartite. The dual of this problem is the problem of finding
a maximum bipartite subgraph also known as MAXIMUM CUT.

3. Let N be the domain of I' and binary = and # be the allowed relations.
MINCSP(T") is equivalent to MULTICUT which takes a graph and a set of
vertex pairs called cut requests as input. A request st is satisfied in the graph
if s and t are in distinct connected components. The problem asks to delete
k edges so that every cut request is satisfied.

Moreover, MINCSP(T) is also equivalent to a generalization of the COR-
RELATION CLUSTERING problem [1]: the input is a dataset which comes with
a qualitative similarity measure: for every pair of data points, the measure
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tells us that they are either similar, dissimilar, or the relation is unclear. The
goal is to assign data points to clusters while minimizing dissimilarity within
each cluster and similarity between distinct clusters. To model this problem
as MINCSP(T), for every pair of data points p; and py, we add a constraint
p1 = po if p1 and ps are similar, p; # po if they are dissimilar, and no constraint
if the relation is unclear. «

In turn, MINCSP is a special case of the Valued Constraint Satisfaction
Problem (VCSP), where relations are replaced by cost functions that deter-
mine the cost of every local assignment to a constraint. The goal is to find an
assignment that minimizes the total cost. The costs may be finite or infinite.
For example, if every cost is 0 or oo, then we are effectively solving a CSP.
MINCSP corresponds to the case with costs 0 and 1. Negative costs (which
can be thought of as rewards for certain assignments) are also allowed in the
VCSP.

Like CSP, MINCSP and more generally VCSP also lends itself to di-
chotomy theorems [43, 56]. For example, Thapper and Zivny proved that
every tractable VCSP with a finite domain and finite costs can be solved in
polynomial time using the basic linear programming relaxation, and other-
wise, it is NP-hard. It is natural to ask, how does the borderline look like
if we allow more running time, namely fixed-parameter tractable time in the
budget k7

Which MINCSPs parameterized by solution cost are fixed-parameter
tractable and which are as hard as CLIQUE?

This question is practically motivated since the class of problems solvable
by linear programming is quite meager, and many important optimization
problems are on the NP-hard side of the classification. However, in practice,
we can often assume that the budget k£ is small and utilize this for efficient
computation. For example, one special case of MINCSP is the problem of
correcting few errors/inconsistencies occurring in a dataset. This could be
the case if the dataset contains few outliers, comes from faulty measurements,
or from merging datasets that almost agree.

From the point of view of parameterized complexity, MINCSP parame-
terized by solution cost is an expressive framework for parameterized deletion
problems in which the goal is to delete few elements (e.g. edges from a graph)
to achieve the desired property (e.g. bipartiteness). See Table 1.1 for exam-
ples. The study of MINCSP-related problems has been very fruitful in terms
of discovering influential algorithmic techniques in parameterized complexity.
The search for dichotomies has been successful in highlighting limitations of
existing methods and led to the introduction of new and powerful methods.
One success story started with the project of Chitnis, Egri, and Marx [15, 16]
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] Problem name \ MINCSP \ Status ‘
MINIMUM st-CUT {0,1};0,1, 2z >y P [32
BIPARTIZATION {0,1}; z#y FPT [54]
Murtiway Cut Nyz=y,z=iforieN FPT [49
DFAS Q;x<y FPT [12
ALMOST 2-SAT {0,1}; 22y, x>y FPT [53]
PAIRED st-CUT {0,1}; 0,1, 21 > y1 Aza > ya | W-h [50]
MuLTICUT Niz=y, z+y FPT [7, 51]
SUBSET DFAS Q;z<y, z<y FPT [14]
UNIQUE LABEL COVER | {1,...,d}; all permutations FPT [13]
CHAIN SAT {0, 1}; 0,1, z1 > 29 > 23 > 24 FPT [40]
MIN-2-LIN Fpe, Qor Z; ax +by = c FPT [24]

Table 1.1: Examples of deletion problems modeled as MINCSP. The first
column contains the domain and the description of the relations separated
by a semicolon. DFAS stands for DIRECTED FEEDBACK ARC SET. 0 and 1
stand for unary assignments of 0 and 1, respectively. Permutation relations
are {a,7(a) :a €S} for asubset S of {1,...,d} and a bijection 7 on {1,...,d}.
Fpq is a finite field, i.e., p is a prime and ¢ is an arbitrary positive integer.

who identified CHAIN-SAT as the missing piece in the full classification for
certain graph homomorphism problems. In the quest to solve CHAIN-SAT,
Kim, Kratsch, Pilipczuk, and Wahlstrom [42, 40, 41] invented a new tech-
nique called flow augmentation for solving intricate directed cut problems.
Not only did they complete the project of Chitnis, Egri, and Marx, but also
resolved parameterized complexity of all BOOLEAN CSPs parameterized by
solution cost [41]. Furthermore, flow augmentation was the missing ingredi-
ent for solving DIRECTED MULTICUT WITH THREE TERMINAL PAIRS [34],
which was open for more than a decade. It has also been immensely useful
for several algorithms presented in this thesis.

Another takeaway from Table 1.1 is that many useful properties such
as acyclicity and undirected connectivity are naturally modeled by infinite-
domain CSPs. Such CSPs have applications in artificial intelligence, schedul-
ing, computational linguistics, optimization and other subfields of computer
science. However, there is no hope of obtaining a dichotomy theorem for
infinite-domain CSPs since they can have arbitrary complexity [3, 37]. This
is an obstacle to studying MINCSP for infinite domains since MINCSP(T") is
only interesting when the decision version CSP(I") is solvable in polynomial
time (otherwise, the problem is already hard for & = 0). A better-behaved
class of infinite-domain CSPs are reducts of finite homogeneous structures;
we refer to Bodirsky’s definitive book [2] for technical details. For now, we
only mention that this class of CSPs includes a host of interesting exam-
ples from the interface with other fields, including many problems that have
been previously mentioned, and there is a dichotomy conjecture for this class.
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The conjecture has been confirmed for many special cases, e.g. for equal-
ity constraints [4] and temporal constraints [5]. MINCSPs with equality and
temporal constraints generalize MULTICUT and DFAS, respectively, so they
are worthy targets for a parameterized complexity study. The main focus of
this thesis is on infinite-domain MINCSPs.

1.4 Approximation Algorithms

As discussed in the previous section, many prominent MINCSPs are NP-
hard. Thus, assuming P£NP, there is no algorithm that can compute optimal
solutions to worst-case instances of these problems in polynomial time. Three
common ways to relax these requirements are

(1) opting for approzimate solutions,
(2) restricting attention to a subset of instances, or
(3) allowing more than polynomial time.

The field of polynomial-time approximation algorithms deals with the relax-
ation of the first kind — instead of insisting on obtaining optimal solutions,
which can be prohibitively slow to compute, one opts for solutions that are
guaranteed to be within a factor of the optimum and feasible to compute. Pa-
rameterized complexity can be used with the latter two relaxations — if we can
identify a meaningful parameter and design an algorithm that runs in fixed-
parameter time with respect to the parameter, then we can solve arbitrary
instances with small parameter values.!

There are problems that are hard for both polynomial-time approximation
within any constant factor and exact fixed-parameter tractable algorithms,
but amenable to the combination of these approaches, i.e. approximation al-
gorithms running in fixed-parameter tractable time. The surveys by Marx [48]
and Feldmann, Lee, and Manurangsi [30] provide a good introduction to this
line of inquiry.

Example 1.7. Here are some examples illustrating the varying complexity
of MINCSPs in terms of polynomial-time approximation and parameterized
complexity.

1. MINCSP over domain N with relations = 0 and x # y is very close to
VERTEX COVER [52]. It admits a folklore polynomial-time 2-approximation
algorithm and a folklore fixed-parameter tractable algorithm.

1 As a side note, in the context of MINCSP viewed as the problem of fixing inconsistencies
in data, one can think of a polynomial-time approximation as treating multiplicative errors
(e.g. ~ 0.1% of ten thousand data points are scrambled), while the parameterized complexity
treats additive error (e.g. » 20 data points in a million are corrupt).
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2. MINCSP over domain N with relations = = y and x # y is equivalent to
MurticuT. It admits no constant-factor approximation in polynomial time
unless the Unique Games Conjecture (UGC) fails [10, 39]. In contrast, this
problem is in FPT [51].

3. MINCSP over domain {0,1} with relations 1 - y1 Ax9 — y2 and 1 — =z,
x — 0 is W[1]-hard [50] but 2-approximable in polynomial time by considering
each implication in the conjunction separately and running a MINIMUM st-
Cur algorithm with twice the budget of the original MINCSP instance.

4. MINCSP over domain {0,1} with relations =0 and z +y + z = 1 mod 2
expressed ODD (HITTING) SET. It is NP-hard and W([1]-hard to approximate
within any constant factor [6]. <

FPT-approximation is well-motivated for infinite-domain MINCSPs: ar-
guably the simplest NP-hard MINCSP, which is MINCSP(T") with domain
N and relations = and #, is equivalent to MuLTICUT, and thus admits no
polynomial-time constant-factor approximation under the UGC. Thus, allow-
ing more time to compute exact or approximate solutions makes sense in this
setting. Moreover, there are examples of prominent problems including MUL-
TICUT [47] for which we can trade-off solution quality for efficiency: currently
known approximation algorithms are much faster and simpler than the exact
algorithms. FPT-approximation is one of the topics explored in the thesis.






Background

The aim of this chapter is to provide a reader with the technical background
required for the rest of the thesis. Although each upcoming paper contains a
specific section on technical preliminaries, the streamlined presentation with
more space for details and examples may benefit the reader. This chapter also
complements Chapter 1 with the missing formal definitions.

Section 2.1 contains basic definitions from computational and parame-
terized complexity and can be safely skimmed or skipped by a reader fa-
miliar with the topics. Section 2.2 includes formal definitions of the con-
straint satisfaction problem (CSP) and related optimization problems VCSP
and MinCSP, as well as a discussion of approximation algorithms for MinCSP.
Section 2.3 introduces the techniques from the parameterized complexity tool-
box used in solving MINCSP problems.

2.1 Computational Complexity

Computational complexity is a branch of theoretical computer science that
studies the amount of resources (time, space, communication, etc.) required
to solve computational problems, and strives to compare problems with re-
spect to their complexity. To have a mathematical discussion on this topic, we
first need to agree on the model of computation, the definition of a computa-
tional problem and the measures of complexity. This section starts by briefly
providing these definitions; a reader interested in a comprehensive treatment
is referred to the textbook by Sipser [55]. The first part is followed by defi-
nitions of the fundamental computational classes P and NP, and the notion
of polynomial-time reductions. The basics of parameterized complexity are
treated in the last section.

11
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Computational Problems and Time Complexity

Recall the CLIQUE problem from Section 1.1: given a graph G and an integer
k, does G contain a clique of size k7 A computational problem like CLIQUE
is formally modeled as a set of yes-instances. Fix an alphabet, say ¥ = {0,1},
and let X* be the set of (finite) strings over this alphabet. For example, (G, k)
can be encoded in ¥ by listing all edges of G (edges are vertex pairs; vertices
can be indexed in an arbitrary way, and then the indices can be written in
binary) followed by k written in unary or binary. Let Acpque be the set of
encodings of (G,k) such that G contains a clique of size k. The decision
problem for a set A ¢ ¥ is the following: given an input string over X, decide
whether it belongs to A or not. Clearly, the decision problem for Acpique is
the same problem as CLIQUE.

To reason about the complexity of a problem, we need to fix a model
of computation. The standard choice in theoretical computer science is a
simple yet universal' Turing machine. This abstract machine consists of a
tape representing memory and an algorithm, i.e. a finite set of instructions.
The machine works step by step, accessing one symbol from its memory at a
time, and takes an action based on its internal state, the currently retrieved
symbol and the instructions of the algorithm. A Turing machine can write on
its tape, i.e. commit information to its memory. The computation is finished
when one of the two final states (accept or reject) is reached.

We can safely fix our alphabet ¥ = {0,1} for the rest of the thesis. The
only remaining part in the definition of a Turing machine is the algorithm, so
we will refer to them interchangeably. The running time of a Turing machine
on an input w € ¥* is the number of steps it takes to reach a final state starting
with w written on its tape. The time complezity is a function ¢ : N - N such
that the running time is at most ¢(Jw|) on every input w € ¥*. Here |w|
denotes the number of symbols (e.g. bits if ¥ = {0,1}) in the encoding of w.
It is common to denote |w| by n.

In theoretical computer science we are usually less interested in the exact
values of the function ¢, but rather in its asymptotic behaviour. The big-O
notation is very convenient for this purpose. For example, we say that an
algorithm (i.e. a Turing machine) runs in O(n) time if there exists a constant
¢ such that ¢(n) <c-n for all n e N.

Polynomial Time and Reductions

Polynomial and polylogarithmic running times (like O(n), O(nlogn), O(n?))
arise naturally in the analysis of algorithms. This has led Cobham [17] and Ed-
monds [27] to postulate that polynomial time captures the notion of efficient
computation. The class P contains all problems that admit polynomial-time
algorithms. The class NP is defined similarly, but the computational device

1 Assuming that the Extended Church-Turing Thesis holds.

12
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is replaced with a non-deterministic Turing machine, which can branch into
(finitely many) states at each step instead of following one deterministic com-
putational path like the classical Turing machine.

It is more intuitive to think about P and NP as the classes of problems for
which the solution can be found and verified in polynomial time, respectively.
For our running example CLIQUE, given an instance (G, k) together with an
intended solution X ¢ V(G), one can easily verify whether | X| = k and whether
there exists an edge in GG between every pair of vertices in X. Moreover, this
verification only requires polynomial time. However, finding such a set X
in polynomial time seems more difficult. Thus, CLIQUE is in NP, but it is
unknown whether it is in P or not. However, what is known is that if CLIQUE
is in P, then in fact P = NP. This is a corollary of the Cook-Levin theorem
and Karp’s pioneering work [38]. To understand it, we need to introduce
reductions between computational problems.

A mapping reduction f:3* — ¥* from a problem A to B is a computable
function such that

weA < f(w)eB

for all w € ¥*. The term ‘computable’ means that there exists a Turing
machine such that, starting with w written on its tape, it reaches a final
state with f(w) on the tape. In other words, there is an algorithm that
produces f(w) given w as input. Thus, if we want to solve problem A and
we have an algorithm for problem B together with an algorithm for f, we can
pipeline the algorithm for f with the algorithm for B, obtaining an algorithm
for A. Observe that the final running time depends on the running time of
the algorithms for f and B. For instance, it follows immediately from the
definitions that the class P is closed under polynomial-time reductions.

A problem B € NP is NP-complete if there is a polynomial-time reduction
from every problem in NP to B. In a sense, these are the hardest problems
in the class: if one obtains a polynomial-time algorithm for any NP-complete
problem, then P = NP by pipelining the reduction with the algorithm. The
quintessential NP-complete problem is SAT — the problem asking if a propo-
sitional Boolean formula is satisfiable. The problems CLIQUE and VERTEX
COVER are two more examples of NP-complete problems. Example 1.1 con-
tains a description of polynomial-time reductions between these problems.

Basics of Parameterized Complexity

Parameterized complexity [26] takes a multivariable approach towards time
complexity. Instead of a univariable function that only depends on the size
of the input, we can measure the running time with a multivariate function
t: N x N — N, where the first argument is still the size of the instance, while
the second can encode any parameter describing the structure of the instance.
For example, we might be interested in solving CLIQUE or VERTEX COVER

13
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for very small values of k, say k = 5. Then it is instructive to parameterize
the problem by k. Formally, a parameterized problem is a pair (Q,p), where
@ <€ X* is the instance and p € N is the parameter. To clarify the example
above, in case of CLIQUE the instance @ is the encoding of (G, k) in binary,
while the parameter p is k.

One can solve CLIQUE in n®®) time by enumerating all k-subsets of ver-
tices and checking if they form a clique in the graph. For very small values of
k and small values of n, this algorithm can be practical. However, it is more
desirable to have a running time of the form f(k)-n®®) where the depen-
dence on the parameter k is decoupled from the dependence on the instance
size. The running time of this form is called fized-parameter tractable, or fpt
time for short. The class of problems that admit fpt-time algorithms is called
FPT. This class is the parameterized counterpart to the class P. We remark
that there is no single counterpart to the class NP in the parameterized world.

Before delving into what it means for a parameterized problem to be hard,
let us first define the reductions that preserve FPT. Intuitively, such re-
ductions need to run in fpt time, map yes-instances to yes-instances, map
no-instances to no-instances, and keep the parameter small. Formally, an
fot-reduction R : ¥* x N - ¥* x N between two parameterized problems
A, B c¥* x N is a fpt-time computable function such that

(w, k) e A <= R(w,k)=(w',k') e B,
and there exists a function g: N — N such that
K < g(k).

The latter property is crucial in allowing pipelining of a reduction with a
fixed-parameter tractable algorithm.

A canonical hard problem for parameterized complexity is CLIQUE pa-
rameterized by the solution size. It is complete for the class W[1], i.e. every
problem in WJ[1] admits an fpt-reduction to CLIQUE. Hard classes of param-
eterized problems form the so-called weft hierarchy

WI[1] cW[2] c--- cW[P].

Formal definitions of the classes and further complexity-theoretic discussions
can be found in the books by Downey & Fellows [26] and Flum & Grohe [31].
For our purposes, it is enough to state the central assumption of the field that
FPT # W[1], which is equivalent to saying that CLIQUE cannot be solved in fpt
time. An even stronger lower bound follows from the widely believed Expo-
nential Time Hypothesis (ETH) of Impagliazzo, Paturi and Zane [35], which
states that BOOLEAN SATISFIABILITY problem cannot be solved in subexpo-
nential, i.e. 2°") time. In other words, ETH implies FPT = W[1] [20].

14
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2.2 Constraint Satisfaction Problems

Fix a set of values D called the domain. A relation of arity r over D
is a subset of tuples R ¢ D". A constraint R(X) applied to the tuple
of variables X = (z1,...,2,) is satisfied by an assignment « : V. - D if
a(X) = (a(z1),...,a(x,)) € R. The tuple X is called the scope of the con-
straint. A constraint language I is a set of relations over D. Consider the
following computational problem.

CONSTRAINT SATISFACTION PROBLEM FOR I' (CSP(T))

INsTANCE: [ = (V,C), where V is a set of variables, and C
is a set of constraints of the form R(X), where
R €T is a relation of arity r and X € V.

QUESTION: Is there an assignment satisfying all constraints
in C?

The cost of an assignment « to an instance I of CSP is the number of
constraints in I that a does not satisfy. The cost of I is defined as the
minimum cost of any assignment to I. Equivalently, it is the minimum size
of a subset X ¢ C such that C' \ X is satisfiable. Thus, CSP asks to decide if
the input instance has cost 0. An optimization version is defined as follows.

MiNiMUM-CosT CSP For I' (MINCSP(T))

INSTANCE:  An instance I = (V,C) of CSP(T") and a positive
integer k.
QUESTION: Is there an assignment to I of cost at most k?

The main object of study in this thesis is MINCSP parameterized by
solution cost k. It is convenient to allow two kinds of constraints in our
instances: soft constraints that incur cost one, and crisp constraints that
incur infinite cost, and are thus satisfied by every finite-cost assignment.

A generalization of CSP and MINCSP called wvalued constraint satisfac-
tion problem (VCSP) is defined by replacing relations with cost functions.
Given a relation R ¢ D", we define a cost function f : D" - Qu {oo} such
that f(di,...,d,) = 0 if (dyi,...,d.) € R. For the tuples (di,...,d,) ¢ R,
we can set f(dy,...,d,;) = oo in the CSP setting, while in MINCSP we can
use f(dy,...,d,) = 1 for soft constraints and f(di,...,d,) = oo for crisp
constraints. Then a relational constraint R(X) can then be replaced by a
functional constraint f(X). More generally, fix a set of functions F mapping
tuples over D to QuU{oo}. An instance of VCSP(F) with variables V consists
of a set of functional constraints {f;(X;)}%,, where F 3 f; : D™ - Qu {oo}
and X € V™. The goal is to minimize the total cost over all assignments from
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V to D, i.e. to find

ar.,%;/riljijn ifi(a(Xi)).

CSP Reductions and Approximation

Primitive positive definitions (pp-definitions) are a model-theoretic notion
that captures combinatorial gadgets in the reductions between CSPs. Let
I" be a constraint language over D and let I'- be the language obtained by
adding the binary equality relation {(d,d) : d € D} to T'. A pp-definition of
relation R e D" in I is an instance Ir = (V,C) of CSP(I'.) with variables of
V partitioned into primary variables X = (x1,...,2,) and auziliary variables
Y, such that the following hold.

1. If «: V' > D satisfies Iy, then a(X) € R.

2. For every (dy,...,d,) € R, there is an assignment « : V' — D satisfying
I such that a(x;) =d; for all i € [r].

In logical term, a pp-definition of R over I' is an existentially quantified for-

mula such that
R(X)=3Y.¢(X,Y),

where ¢ is a conjunction of formulas of the form R’(v1,...,v,) for R’ € - using
variables in X uY. Intuitively, if R admits a pp-definition in I', then we can
simulate constraints R(X) by introducing auxiliary variables Y, replacing the
constraint with Ir, and eliminating equality constraints by identifying every
pair of variable v and v such that u = v is a constraint in Ir. Consequently,
we obtain the following.

Proposition 2.1. If CSP(T") is in P and T' pp-defines a relation R, then
CSP(T'u{R}) is in P.

Pp-definitions are of limited use for MINCSP since they do not preserve
costs. For example, the relation

R={(a,b,c,d)eQ*:a<brc<d} (2.1)

admits a simple pp-definition in the language {<}, namely {z; < o, x5 < 24}.
However, if we replace a constraint R(x1,xs2,x3,24) by 1 < 2 and x3 <
x4 in an instance of MINCSP, the minimum cost of an assignment to the
resulting instance may increase by one because violating 1 < zo and z3 < x4
incurs a cost of two. Another notion particularly useful for parameterized
complexity reductions is (strict) implementations. A pp-definition I in T is
an implementation of R if the following holds.

3. For every (di,...,d,) ¢ R, there is an assignment o : V — D of cost 1
such that a(x;) =d; for all i € [r].

16



2.2. Constraint Satisfaction Problems

The latter can be interpreted as follows: if an assignment does not satisfy
R(X), then it can be extended to the auxiliary variables Y so that the result-
ing assignment does not satisfy only one constraint in /.

For example, the relation < on the domain Q can be implemented in the
language {<,#} Namely, one can replace a constraint u < v with I. = {u <
v,u # v} and no auxiliary variables. If a(u) < a(v), then « clearly satisfies
I.. On the other hand, if a(u) ¢ a(v), then either a(u) = a(v) and « satisfies
u < v but not u # v, or a(u) > a(v), in which case « satisfies u # v but not
u < v. In both cases, the cost of « is 1.

The utility of implementations is summarized below.

Proposition 2.2. If MINCSP(T') is in FPT and T' implements R, then
MINCSP(T' U {R}) is in FPT.

Pp-definitions can still be used for special kinds of reductions in the
MINCSP setting.

Proposition 2.3. If MINCSP(T') is in FPT and T pp-defines R, then
MINCSP(T'u{R}) is in FPT on instances that use R only in crisp constraints.

In VCSP-inspired terminology, one could say that pp-definitions preserve
0 and oo costs, but no other costs. Thus, they can be used for gadgets that
replace crisp constraints and cannot be used to replace soft ones. In contrast,
implementations also preserve unit costs, so they can replace soft constraints
with costs 0 and 1.

A pp-definition is equality-free, or a eqpp-definition for short, if it only used
the relations of I' (as opposed to I'_). Eqpp-definitions have further usage
in approximation algorithms. Note that in the example with the relation
from (2.1) we observed that replacing R(z1,x2, T3, 24) with {z1 < 2,3 <4}
can increase the cost by one. Thus, in total, it can increase the cost of a
yes-instance from k to at most 2k, i.e. the cost stays within a constant factor
of k. To make the idea precise, we introduce the following problem defined
for every v > 1.

GAP,MINCSP(T)

INSTANCE:  An instance I of CSP(I") and an integer k.
GOAL: Distinguish between the following cases:
(YES) The cost of T is at most k.
(NO) The cost of I is greater than k.

Note that GapyMINCSP(T') is exactly the same problem as MINCSP(T),
while for every v > 1 it is a relaxation allowing arbitrary answers if the cost
is within (k,vk). An algorithm solving GAP,MINCSP(T') is called a y-factor
approximation or simply a y-approximation. Note that if such an algorithm
returns YES, then the instance is guaranteed to have an assignment of cost
at most vk. The connection to eqpp-definitions is formulated as follows.
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Proposition 2.4 (Lemma 10 in [6]). Suppose there is an eqpp-definition of
relation R in T' consisting of ¢ constraints. If GAP,MINCSP(T') is in P
(FPT), then GAP.,MINCSP(I' u{R}) is in P (FPT).

2.3 Parameterized Deletion Toolbox

This section provides an overview of the tools used in parameterized algo-
rithms illustrated by applications to MINCSPs. To motivate the section, we
start with an extensive example.

Casting Problems as MinCSP

Many problems including a number of milestones in the development of pa-
rameterized complexity can be modeled as MINCSP — see Table 1.1. Here we
elaborate further on these examples.

1. MiINIMUM st-CUT in directed graphs can be modeled as BOOLEAN
MINCSP, i.e. MINCSP with domain {0,1}, with implication and assign-
ment relations: arcs (s,v) translate to assignment constraints 1 — v, arcs
(v,t) translate to assignment constraints v — 0, and arcs (u,v) translate to
implications u — v. Such an instance is consistent if and only if there is no
path of implications from a 0-variable to a 1-variable, i.e. the constraints of
the instance do not imply 1 - 0. Deleting an implication in the resulting in-
stance of MINCSP corresponds to removing an arc from the original directed
graph.

PAIRED st-CuUT is a variant of this problem where the arc set is partitioned
into pairs, and the goal is to delete k pairs so that no st-path remains. While
MINIMUM st-CUT is famously in P, PAIRED st-CuT is NP-hard and W([1]-
hard [50]. The way to model this problem as a BOOLEAN MINCSP is similar to
the one described above: translate arc pairs ((u1,v1), (uz,v2)) into constraints
Uy = U1 AUy = Va.

2. MiNIMUM BIPARTIZATION is modeled as BOOLEAN MINCSP by trans-
lating edges uv of the graph to disequality constraints u # v. If the original
graph has an odd cycle, then the resulting instance has no Boolean solution,
e.g. {u#v,v#w,w+u} is inconsistent over {0,1}. The converse also holds,
and correctness follows since having no odd cycles is equivalent to being bipar-
tite. The problem is NP-hard (see Example 1.6) and fixed-parameter tractable
by an algorithm of Reed, Smith, and Vetta [54]. They introduced the tech-
nique of iterative compression, which has become a standard opening step for
parameterized algorithms (see Chapter 4 in [20] for numerous examples).

3. MINIMUM MULTIWAY CUT is the problem in undirected graphs that asks,
given a graph and a subset of its vertices called terminals, to delete few edges
so that all terminals become disconnected. MINIMUM st-CUT on undirected
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graphs is a special case with only two terminals. With three or more ter-
minals, the problem is NP-hard [25] and fixed-parameter tractable [49]. To
model it as MINCSP, enumerate the terminals ¢1,...,¢,, add an undeletable
constraint ¢; = ¢ for every 4, and constraints u = v for every edge uv in the input
graph. The resulting CSP instance is consistent if and only if no two termi-
nals are connected by a path of equalities, i.e. they lie in different connected
components. In his work on MuLTIwWAY CUT, Marx [49] introduced impor-
tant separators, which have since become indispensable in graph separation
problems and several other contexts (see Chapter 8 in [20]).

4. DIRECTED FEEDBACK ARC SET asks to delete few arcs from a directed
graphs to make it acyclic. This problem is NP-hard [38] and fixed-parameter
tractable [12]. The algorithm of Chen, Liu, Lu, Razgon, and O’Sullivan [12]
uses iterative compression and guessing in fpt time to reduce DFAS to a
separation problem called SKEW MULTICUT and then solve it using important
separators. This blueprint for parameterized deletion problems has been used
in many subsequent works. It is also present in the BIPARTIZATION algorithm
of [54], where iterative compression and fpt guessing reduce the problem to
MiNiMUM st-CUT.

5. In ALMOST 2-SAT the input is a propositional formula consisting of 2-
clauses, and the goal is to delete few clauses to make it satisfiable. It general-
izes MINIMUM st-CUT and MINIMUM BIPARTIZATION, and hence is NP-hard.
The fpt algorithm of Razgon and O’Sullivan [53] follows the same blueprint
of iterative compression and fpt guessing, reducing ALMOST 2-SAT to a sep-
aration problem.

6. MurricuT is discussed in Example 1.6. This problem generalizes MUL-
TIWAY CUT (which is a special case with cut requests forming a clique), is
NP-hard and in FPT parameterized by the solution size. Marx and Razgon [50]
first gave a 2-approximation fpt algorithm for this problem with a series of
reductions ending in BOOLEAN MINCSP with relation x1 = y1 A zo — Y2 and
unary assignments z = 0,z = 1. In the context of the CSP, the constraint
of the form x; - y1 A x2 — ys introduces no extra complexity: it can be
viewed as two separate constraints x1 — y; and xs — yo, and the consistency-
checking problem is then equivalent to MINIMUM st-CuUT. However, in the
context of optimization, allowing deletion of both constraints at cost 1 makes
a difference: the resulting MINCSP is NP-hard and W[1]-hard, i.e. as hard as
CLIQUE under fpt reductions. On a very high level, double-implication can be
used to create gadgets coordinating two choices (e.g. choosing two endpoints
of an edge), and thus allows a reduction from CLIQUE. Essentially the same
relation occurs in several subsequent hardness reductions, e.g. in [41, 24, 52].

FPT status of MULTICUT was an open problem resolved in the positive in-
dependently by Bousquet, Daligault & Thomassé [7] and Marx & Razgon [51].
The latter enriched the toolbox of parameterized complexity with random
sampling of important separators.
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7. SUBSET DIRECTED FEEDBACK ARC SET is a generalization of DFAS in
which the input graph comes with a subset of distinguished arcs, and the goal
is to delete few arcs in order to obtain a graph with no directed cycle con-
taining a distinguished arc. Note that directed cycles without distinguished
arcs are allowed. To cast it as MINCSP with domain Q, translate every arc
(u,v) into a constraint u < v and every distinguished arc (u,v) into a con-
straint u < v. Observe that a directed cycle of <-constraints is satisfiable as an
instance of CSP (by setting all variables along the cycle to the same value),
while having one <-constraint on the cycle renders it unsatisfiable. Chitnis,
Cygan, Hajiaghayi, and Marx [20] provided the first FPT algorithm for SuB-
SET DFAS. They generalized random sampling of important separators to
directed graphs, and applied it to reduce the problem to the so-called shad-
owless variant. While simpler, solving this variant still requires significant
problem-specific insights.

8. UNIQUE LABEL COVER (ULC) is the problem at the heart of the Unique
Games Conjecture (UGC) of Khot [39]. It can be modeled as MINCSP with
a finite domain {1,...,d} and binary constraints R(x,y) such that fixing the
value of either x or y leaves at most one way to extend the assignment to
the second variable so that the constraint R(x,y) is satisfied. One example
of such constraint is £ + y = 0 mod 3 or any other two-variable equation
modulo a prime. Another example could be a constraint (z,y) € {(0,1),(2,0)}
over domain {0,1,2,3}. ULC is NP-hard and does not admit constant-factor
approximation in polynomial time under Khot’s conjecture. Chitnis, Cygan,
Hajiaghayi and Pilipczuk [13] showed that ULC is fixed-parameter tractable
by developing the technique of randomized contractions, which has also been
instrumental in showing that a challenging open problem called MINIMUM
BISECTION is fixed-parameter tractable [21]. The input of the latter problem
is an undirected graph G, and the goal is to partition its vertices into two sets
A and B of nearly equal size (i.e., ||| - |B|| < 1) so that at most k edges have
one endpoint in A and another in B.

9. CHAIN SAT is a BOOLEAN MINCSP with the relation z1 - o - 3 > 24
and unary assignments x = 0 and x = 1. It is similar to the double-implication
relation 1 — xoAx3 - y4 but additionally links x5 and x3. In terms of st-cuts
in directed graphs, we are no longer allowed to pair up arbitrary arcs to be
deleted at cost one, but triples of consecutive arcs. The importance of this
problem was first identified by Chitnis, Egri and Marx [16] in their study of
LisT H-COLORING BY VERTEX DELETION. A graph G is homomorphic to a
graph H if there exists a mapping h: V(G) — V(H) that preserves the edge
relation, i.e. if uv € E(G), then h(u)h(v) € E(H). The H-COLORING problem
asks whether an input graph G is homomorphic to H. Note that this problem
is equivalent to CSP(H), where H is viewed as a binary symmetric relation.
List H-COLORING is a generalization in which the input lists come with
L, cV(H) for all v e V(G), and the mapping h: V(G) — V(H) is required
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to choose value h(v) from list L,. Feder, Hell and Huang [28] classified the
graphs H for which the problem in P vs NP-complete. LisT H-COLORING BY
VERTEX DELETION (LHOMVD(H)) asks to delete k vertices from an input
graph G to make it homomorphic to H. Chitnis, Marx, and Egri conjectured
that LHOMVD(H) is fixed-parameter tractable whenever L1ST H-COLORING
is in P. They solved several cases and gave a reduction from the problem to
CHAIN SAT, conjecturing that the latter is fixed-parameter tractable. Kim,
Kratsch, Pilipczuk and Wahlstrom [40] showed that CHAIN SAT is indeed in
FPT.

Cutting Tools

We review the basics of graph cuts and present more advanced cutting tools
used in parameterized complexity. All concepts below can be defined for both
directed and undirected graphs. We restrict our attention to the directed
counterparts since they are more general in the context of this thesis.

Minimum Cuts

Let G be a directed graph with vertex set V(G) and arc set A(G). To keep
the notation concise, we will use uv to denote an arc from u to v, and similarly,
vu to denote an arc from v to u. A cut in G is a subset X of the vertices
V(G). A cut X is an st-cut for a pair of vertices s,t € V(G) if s € X and
t ¢ X. More generally, X is an ST-cut for a pair of subsets S,T ¢ V(G) if
ScXand TnX =a. Let A(X) denote the set of arcs uv € A(G) such that
uweX and b ¢ X, and let §(X) = |A(X)|. The arcs of G may have positive
capacities associated with them via function cap : A(G) - Q*. The capacity
of a cut X denoted by cap(X) is the sum of capacities of all arcs in A(X).
Note that if all arcs have unit capacity, then cap(X) equals 6(X). A cut X
is a minimum cut if it has minimum capacity.

Consider the following problem: given a directed graph G with a distin-
guished source vertex s and sink vertex t, and arc capacities cap : A(G) - Q™
we want to push as much flow from s to ¢ as possible without exceeding the
capacity of any arc. Formally, flow is a function f: A(G) — Qg fulfilling the
following constraints:

e f(uv) < cap(uv) for all uv € A(G), i.e. flow cannot exceed the capacity
of any arc;

° ZquA(G) f(UU) = ZU’U)SA(G) f(’UUJ) for all v € V(G) N {S,t}, ie. the
incoming flow equals the outgoing flow in every interval vertex of the
graph, so no flow is lost along the way.

Define value of f to be ¥yuea(q) f(su) = Xpteace) f(vt), ie. the amount of
flow leaving the source, which, by the conservation constraints, equals the
amount of flow reaching the sink.
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A mazimum flow is a flow of maximum value. Let Ay (G) denote the
maximum flow value in (G, s,t,cap). We omit the subscript st when it is
clear from the context. The celebrated theorem of Ford and Fulkerson [32]
asserts that Mg (G) equals the capacity of a minimum st-cut in G. Moreover,
a flow of maximum value and a cut of minimum capacity can be computed in
polynomial time.

Closest and Furthest Cut

Let G be a directed graph with a source s and a sink ¢, and let cap : A(G) - Q*
be the arc capacities. As before, we can generalize cap to st-cuts. One useful
property of the generalized capacity function cap : 2V (%) - Q* is submodular-
ity, i.e.

cap(X) +cap(Y) 2cap(X nY) +cap(X uY)

holds for all st-cuts X,Y in G.2

Now suppose X and Y are minimum st-cuts. Then X nY and X uY are
minimum cuts as well: by submodularity, cap(XnY)+cap(XuY') < 2 A4 (G),
while cap(X nY') > A\t (G) and cap(XuUY') > A\s(G). Moreover, unless X =Y,
we also have that XnY ¢ X, XnY ¢V, X ¢ XuY and Y ¢ XuY. Thus, there
exists a unique closest and a unique furthest minimum cut, i.e. a minimum cut
that is inclusion-wise minimum and inclusion-wise mazximum, respectively.
The Ford-Fulkerson algorithm computes the unique closest minimum st-cut.
By running the algorithm on the reversed graph (arc directions switched, ¢
becomes source and s becomes sink), we can also compute the unique furthest
minimum st-cut in polynomial time.

Example 2.5. As an application of closest cuts, let us solve a problem called
DiGrAPH PAIRED CuT. Cast as MINCSP, it is a problem with domain {0, 1},
soft constraints of the form 1 - x, * — y, and crisp constraints of the form
pVv .2 In graph-theoretic terms, it can be stated as follows: given a directed
graph G with a source vertex s, and a set P of vertex pairs {p,q} € (V(ZG)),
we want to find a cut X ¢ V(G) of capacity at most k such that s € X,
and for every pair {p,q} € P, either p ¢ X or ¢ ¢ X. The connection to the
MiINCSP problem stated above goes as follows: source s represents value 1,
arcs s represent assignment constraints 1 — x, arcs xy represent implication
constraints x — y, and pairs {p,q} € P stand for the constraints pv g. We
require that the cut to separate s from either p or ¢, which, in CSP terms,
allows us to set one of them to 0.

Kratsch and Wahlstrom [44] present an elegant O*(2¥) algorithm for Di-
GRAPH PAIR CUT. Initialize T := & and proceed as follows.

20ne way to see this is to expand the sums and observe that all arcs appearing on the
right-hand side also appear on the left-hand side, while the arcs between X \Y and Y \ X
appear only on the left-hand side.

3This problem is almost ALMOST 2SAT, with the difference being that the constraints
of the form p Vv q are not available.
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1. Compute the closest minimum s7T-cut X in G.

2. If the capacity of X exceeds k, reject.

3. If p¢ X or ¢ ¢ X holds for all pairs {p, q} € P, then accept.

4. Otherwise, pick an arbitrary pair {p,¢} € P such that pe X and g€ X.
5. Branch in two directions:

o Run the algorithm with 7'« T u {p}.
o Run the algorithm with T« T'u {q}.

6. Accept if either branch accepts, otherwise reject.

To argue correctness, let X* be an optimal solution and T be the set of
vertices in Uy, qyep 1P, ¢} separated from s by X*. It suffices to observe that
the following invariant is maintained throughout the algorithm: there is at
least one branch with T'c T™.

For the running time, observe that the flow increases in each branch: in-
deed, if there exists a minimum s7T-cut in G that separates p (respectively, q)
from s, then so does the closest sT-cut. The recursion tree has depth at most
k and branching factor 2, resulting in 2¥ branches in total. <

Important Cuts

We start with a motivating example.

Example 2.6. Consider EDGE 3-MULTIWAY CUT problem. An instance is
an undirected graph G with three terminal vertices t1, to, t3, and an integer
k. The goal is to delete at most k edges from G so that no two terminals
remain connected. Equivalently, the problem can be stated as partitioning
V(G) into three sets Ty, Ts, T3 so that ¢; € T; for all 7 € {1,2,3} so that

5(T1) + (S(Tg) + (5(T3) <2k

since every deleted edge is counted twice.

To design an fpt algorithm for this problem, we proceed in two stages:
first, we find a cut T; that separates t; from {¢o,¢3}, and then compute a
minimum ¢st3-cut in the subgraph induced by V(G) \~ T;. The second step
requires polynomial time, so the difficulty lies in the first step of the algorithm.
Indeed, the number of cuts separating ¢; and {to,?3} is unbounded in k, so
we need to understand the search space better. Guess ki = 6(71), i.e. the
part of the budget k that we spend in the first stage of the algorithm, and
observe that the search for T} can be restricted to inclusion-wise mazimal
cuts of capacity k. Intuitively, pushing T} closer to ¢ and t3 cannot increase
the tot3-flow in the remaining graph — it may only intersect more tot3-paths.
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A replacement argument helps us formalize this intuition: if a hypothetical
solution (717, Ts,T5) with k crossing edges is such that 77 is not inclusion-wise
minimal, then, by definition, there exists another cut X ¢ V(G) that separates
t; and {t,t3} and satisfied T} € X and §(X) = §(71) = ky. Furthermore,
replacing 77 with X yields a solution of cost at most k. We will see how to
leverage this observation in the sequel. <

The example above shows that, in the course of designing an fpt algorithm
on a directed graph G, we may want to enumerate inclusion-wise maximal
cuts X such that §(X) is bounded by the parameter. This notion is closely
related to furthest cuts considered in the previous section. However, unless we
assume that the cut has minimum capacity, there is no unique candidate. On
the other hand, Marx [49] remarkably showed that the number of inclusion-
wise maximal cuts of capacity at most k is bounded by a function of k alone.
To formalize, we need the following definition.

Definition 2.7. Let G be a directed graph and s,t € V(G). An st-cut X is
important if there exists no st-cut X’ such that X ¢ X’ and 6(X’) <§(X).

A consequence of the definition is that every superset of an important cut
X has higher capacity.

Theorem 2.8. Let G be a directed graph and s,t € V(G). There are at most
4% important st-cuts in G.

Marx [49] introduced important cuts and gave an upper bound of 4F* on
their number. Later, the bound was improved to the essentially tight* 4% by
Chen, Lu and Liu [11].

An algorithm listing all important cuts (and proving Theorem 2.8 along
the way) works as follows. Initialize S = {s} and T = {¢}.

1. Let S be the furthest ST-cut in G.
2. If 6(S) > k, stop.
3. Output S as an important cut.

4. Pick an arbitrary arc wv in A(S) with u € S and v ¢ S, and branch in
two directions:

e Delete uv from G, decrease k by 1, add v to T, and run the algo-
rithm on the new graph.

¢ Add v to S and run the algorithm on the same graph G, keeping
k unchanged.

4An example of a graph with @(4k/k3/2) important st-cuts is a complete binary tree
with k leaves, source s being the root, and a sink ¢ connected to every leaf, with all arcs
oriented from s to ¢t. See Figure 8.5 in [20, Section 8.2] for an illustration and the caption
for further discussion.
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Observe that in the first branch the parameter decreases by one, while the
maximum S7T-flow in the new graph decreases by at most one. In the second
branch, the ST-flow increases by one since we are computing furthest cuts.
Thus, the measure 2k — Agr decreases in each branch. Our search tree has
branching factor 2 and depth at most 2k, yielding at most 22* = 4% branches.

Branch, Cut, and Iterate

Many parameterized deletion algorithms follow the paradigm “branch-cut-
iterate”. The usual opening step in such algorithms is iterative compression.
Introduced originally by Reed, Smith and Vetta [54] in their fpt algorithm
for ODD CYCLE TRANSVERSAL (OCT) (given an undirected graph, delete k
vertices to make it bipartite), it has since become an indispensable tool. We
illustrate this simple and powerful idea in an algorithm for the edge version of
OCT called GRAPH BIPARTIZATION: given an undirected graph G, delete k
edges to make it bipartite.® This problem can also be modeled as a Boolean
MINCSP with a single relation #. On the conceptual level, the algorithm is
mimicking the steps of an inductive proof, building up the graph one edge at
a time. Let us enumerate the edges of G as ey, ..., e,,, and for every 1 <i < m,
let G; be the graph with vertices V(G) and edges {e1,...,e;}. In particular,
G = G. Note that (G; is a yes-instance, so X = @& is a solution for G;. By
analogy with an inductive proof, this is our base case. The algorithm will
work its way through Gi,...,G,,, while maintaining a solution X of size at
most k. If at any step it detects that no solution of size at most k exists, then
the instance is rejected immediately: indeed, if (G, k) is a no-instance for any
i, then (G, k) is a no-instance as well®. For the inductive step, suppose X is
a solution to G;. By the inductive hypothesis, we have |X| < k. Adding edge
ei+1 to Gy, we obtain G’ = G;41, and observe that deleting X' = X u{e;41}
from G’ make it bipartite since G; — X and G’ — X’ are the same graph.
The caveat is that in the worst case, we have |X’| = k + 1, so our problem
reduces to designing a compression routine that takes G’ and X' as input
with the promise that G’ — X' is bipartite and | X'| = k+1, and returns either a
solution Z of size at most k, or correctly reports that no such solution exists.
Importantly, if this routine runs in fpt time, then we have an fpt algorithm
for the original problem. It might seem that conceptually we are ‘morally’ no
closer to a solution. However, having X’ provides us with a handle on the
problem that we can leverage by fpt computation.

The next step is branching. We guess the intersection of X’ with the
hypothetical optimal solution Z, and remove X' n Z from the graph. This
step creates at most 2¥ branches. The MINCSP formulation of the problem

5Note that a minimum set of edges whose deletion leaves a bipartite graph is comple-
mentary to a maximum cut in the graph, so GRAPH BIPARTIZATION is NP-hard.

SHere we are using the fact that bipartiteness, and, more generally, the satisfiability of
a set of constraints is a monotonic property.
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becomes helpful at this stage. Since G'—X" is bipartite, there is an assignment
a: V(G) - {0,1} that satisfies every edge in G’ — X', i.e. assigns distinct
values to its endpoints. Moreover, we can find this assignment in polynomial
time by a simple propagation algorithm. For the edges in X’ \ Z, we have
no guarantee that « satisfies them, and this has to be fixed. Assuming Z is
a solution, there also exists an assignment : V(G) — {0,1} that satisfies
every edge in G’ — Z. We have no access to 3, but we can guess the values
it assigns to the endpoints of the edges in X’ \ Z. Denote this set of vertices
by T and observe that |T| < 2(k + 1), hence this guessing step creates at most
2F+1 branches.

The final step in the algorithm is cutting. Partition T into subsets A =
{zeT:a(x)=8(x)} and D={xeT:a(zx)+ B(zx)}, i.e. vertices for which a
and (3 agree and disagree, respectively. The key observation is that a vertex
from A cannot be connected to a vertex from D in G’ - Z': indeed, if o and 8
disagree on the value of one vertex, then they disagree on the value of every
vertex in the same connected component. Hence, Z’ is an AD-cut in G'.
One can show that this condition is not only necessary, but also sufficient, so
the problem reduces to computing a minimum AD-cut, which can be done in
polynomial time.

The steps of this algorithm are summarized in Algorithm 1.
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Algorithm 1 An algorithm for GRAPH BIPARTIZATION
procedure GB-SOLVE(G, k)

G <« {V(G),o} > Initialize empty graph
X=9 > Maintain solution X
for ee E(G) do

G <G +e

X=X+e

Z < GB-CoMPRESS(G', X, k)
if compression failed then
reject
else
X<« Z
accept

procedure GB-COMPRESSION(G, X, k) > Assume Z is a smaller
solution to (G, k)
for Y < X do > Guess intersection Y = X nZ
G'<«G-Y
X «X-Y
for AcV(X’) do > Guess vertices where o and 3 agree
D« V(X)\A
Z < MINCUT(G, A,B) 1> Compute minimum (A, B)-cut in G
if |Z| <k then
return 7
return FAIL

27






Overview of Contributions

This chapter contains a short overview of the results comprising this thesis.
These are four publications on parameterized complexity of infinite domain
MiINCSPs. We remark that full report versions of all publications are included
in the thesis rather than short conference versions. For discussions of future
work, we refer the reader to concluding sections of the included papers.

1) Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, and George
Osipov. “Resolving Inconsistencies in Simple Temporal Problems: A
Parameterized Approach.” In: Proceedings of the 36th AAAI Conference
on Artificial Intelligence (AAAT 2022). 2022, pp. 3724-3732

The first paper is about the SIMPLE TEMPORAL PROBLEM (STP), which
is an expressive Al formalism for temporal reasoning. Here the constraints
are of the form

{01 -y Oz u

for 1,01 € {<,<} and f,u € QU {-o0,+00}. Values —oo,+0o are used for
imposing one-sided constraints, e.g. 1 < x —y < oo essentially enforces lower
bound z -y > 1 and no upper bound. Note that ¢ = u is allowed, so difference
equation constraints like z —y = 3 can also be enforced via 3 < x —y < 3. This
problem generalizes DFAS, which is MINCSP with constraints of the form
x—y >0, and SUBSET DFAS which is MINCSP with constraints of the form
r—y>0,and z -y >0. We classify parameterized complexity of MINCSP for
every subset of STP constraints. In the hindsight, we note that our algorithm
for equation constraints can be significantly improved using other techniques.

2) Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Os-
ipov, and Magnus Wahlstrom. “Almost Consistent Systems of Linear
Equations.” In: Proceedings of the 2023 Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA 2023). 2023, pp. 3179-3217
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3. OVERVIEW OF CONTRIBUTIONS

In MINLIN we are given an inconsistent system of linear equations, and
the goal is to remove few equations so that the system becomes consistent.
The parameter is the number of equations to be removed. This problem
can be studied over different rings, e.g. finite fields, the rationals or the
integers. MIN-2-LIN(F5), i.e. the problem restricted to equations over Fy
with two variables per equation, easily reduces to BIPARTIZATION, while MIN-
3-LIN(F3) encompasses ODD SET, which is W[l]-hard. In the same spirit,
we extend the dichotomy between MIN-2-LIN and MIN-3-LIN to fields and
Euclidean domains!, which is an abstract algebraic structure that includes Q,
Z, Z[i], and many other rings. In particular, we devise fpt algorithms for
MiIN-2-LIN(D) if D is a field or a Euclidean domain, and show that MIN-3-
LiN(D) is W[1]-hard for every nontrivial ring . For the algorithmic results,
we introduce important balanced subgraphs, a generalization of important
separators formulated in terms of biased graphs. The technique relies on
algorithmically beneficial properties of the linear programming formulation of
the problem.

3) George Osipov and Magnus Wahlstrom. “Parameterized Complexity of
Equality MinCSP.” in: Proceedings of the 31st Annual European Sym-
posium on Algorithms (ESA 2023). 2023, 86:1-86:17

We consider EQUALITY MINCSP, in which the domain is N and the con-
straints are defined by arbitrary first-order formulas using the predicate =.
Already with the two simplest relations = and # available, this problem models
MurticuT, and thus is NP-hard and in FPT. We give FPT vs W[1]-hardness
dichotomies for solving such problems exactly and computing constant-factor
approximations. While doing so, we identify two interesting generalizations of
MurTicuT, namely MULTICUT WITH TRIPLES and DISJUNCTIVE MULTICUT.
The former extends MULTICUT with triple cut requests that can be ignored
at unit cost, and is in FPT. The latter allows disjunctive cut requests, and
is FPT-approximable within a constant factor. Further, we show that these
generalizations are ‘maximal’, in the sense that if a non-trivial EQUALITY
MINCSP does not reduce to the first problem, it is W[1]-hard, and if it does
not reduce to the second, it is W[1]-hard to approximate within any constant.

4) Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Os-
ipov, Marcin Pilipczuk, and Roohani Sharma. ¢“Parameterized Com-
plexity Classification for Interval Constraints.” In: Proceedings of the

18th International Symposium on Parameterized and Exact Computa-
tion (IPEC 2023). 2023, 11:1-11:19

Allen’s Interval Algebra (IA) is a prominent formalism for qualitative tem-
poral reasoning. Two proper intervals on the real line may relate in thirteen

IThe algorithms work under reasonable assumptions on the effectiveness of arithmetic
in these domains.
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different ways (be equal to each other, the first may precede the second or
start when the second ends, the first may be contained in the second, etc.).
An instance of the computational problem for TA is a set of constraints using
these thirteen basic relations applied to pairs of variables, and the goal is to
assign proper intervals to the variables so that all relations hold. We study
the parameterized complexity of MINCSP for all subsets of basic interval re-
lations, and show for which subsets the problem is in FPT or W[1]-hard. For
the positive cases, we introduce and solve MINCSP (<, «, =), an extension of
DFAS with edges that enforce equality constraints and ‘long’ arcs that enforce
constraints of the form x <« y. The latter is satisfied by assigning y a value
that is ‘much greater’ than . All tractable cases of MINCSP for basic interval
relations reduce to this problem. The intuitive reason why MINCSP (<, «, =)
is in FPT is that the solution is a linear arrangement of points on the real
line. However, an interval constraint in general enforces a pair of pointwise
constraints, one for the left endpoints and one for the right endpoints of the
intervals. If these constraints are not correlated in a ‘linear’ fashion, mean-
ing that we cannot reduce to MINCSP(<, «, =), we show that the problem is
WI(1]-hard by carefully crafted gadget reductions.
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