Acyclic Orders, Partition Schemes and CSPs

Unified Hardness Proofs and Improved Algorithms

Peter Jonsson  Victor Lagerkvist ~ George Osipov
Link6ping University

IJCAT 2021

Peter Jonsson, Victor Lagerkvist, George Osipov Acyclic Orders, Partition Schemes and CSPs



Short Summary

m Many computational problems can be realized as CSPs
with infinite domains over partition schemes.

nd CSPs



Short Summary

m Many computational problems can be realized as CSPs
with infinite domains over partition schemes.

m Applications in Al include formalisms for qualitative
spatial and temporal reasoning: RCC-8, Allen’s Interval
Algebra, Rectangle Algebra, etc.

Peter Jonsson, Victor Lagerkvist, George Osipov Acyclic Orders, Partition Schemes and CSPs



Short Summary

m Many computational problems can be realized as CSPs
with infinite domains over partition schemes.

m Applications in Al include formalisms for qualitative
spatial and temporal reasoning: RCC-8, Allen’s Interval
Algebra, Rectangle Algebra, etc.

m Many CSPs over partition schemes are computationally
hard.

Peter Jonsson, Victor L Osipov Acyclic Orders, Partition Schemes and CSPs



Short Summary

m Many computational problems can be realized as CSPs
with infinite domains over partition schemes.

m Applications in Al include formalisms for qualitative
spatial and temporal reasoning: RCC-8, Allen’s Interval
Algebra, Rectangle Algebra, etc.

m Many CSPs over partition schemes are computationally
hard.

m We provide sufficient conditions for hardness explaining
many results in the literature in a uniform way.

Peter Jonsson, Victor L Osipov Acyclic Orders, Partition Schemes and CSPs



Short Summary

m Many computational problems can be realized as CSPs
with infinite domains over partition schemes.

m Applications in Al include formalisms for qualitative
spatial and temporal reasoning: RCC-8, Allen’s Interval
Algebra, Rectangle Algebra, etc.

m Many CSPs over partition schemes are computationally
hard.

m We provide sufficient conditions for hardness explaining
many results in the literature in a uniform way.

m We show that even restricted to degree-bounded cases, such
CSPs are unlikely to admit subexponential time algorithms.

Peter Jonsson, Victor Lagerkv rge Osipov Acyclic Orders, Partition Schemes and CSPs



Short Summary

m Many computational problems can be realized as CSPs
with infinite domains over partition schemes.

m Applications in Al include formalisms for qualitative
spatial and temporal reasoning: RCC-8, Allen’s Interval
Algebra, Rectangle Algebra, etc.

m Many CSPs over partition schemes are computationally
hard.

m We provide sufficient conditions for hardness explaining
many results in the literature in a uniform way.

m We show that even restricted to degree-bounded cases, such
CSPs are unlikely to admit subexponential time algorithms.

m In special cases (e.g., RCC-8) we show that CSPs over
partition schemes admit improved algorithms.
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Let B be a set of binary relations over a domain D.

CSP(B)

INSTANCE: A set of variables V and a set of constraints C of
form R(z,y), where z,y € Vand R € B.

QUESTION: Is there an assignment f: V' — D such that
(flz), fly)) € R for all constraints R(z, y) in C?

If (f(z),f(y)) € R, we say that assignment f satisfies R(z, y).
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Partition Scheme

A partition scheme B is a set of binary relations over an infinite
domain D such that:

® Upep R = D? (jointly exhaustive).

rkvist, George ( ov Acyclic C , Partitio chemes and CSPs



Partition Schemes

A partition scheme B is a set of binary relations over an infinite
domain D such that:

® Upep R = D? (jointly exhaustive).
m If Ry, Ry € B, then Ry N Ry = () (pairwise disjoint).

Peter Jonsson, Victor Lagerkvist, George Osipov Acyclic Orders, Partition Schemes and CSPs



Partition Schemes

A partition scheme B is a set of binary relations over an infinite
domain D such that:

® Upep R = D? (jointly exhaustive).
m If Ry, Ry € B, then Ry N Ry = () (pairwise disjoint).
m {(d,d) | d € D} € B (equality).

Peter Jonsson, Victor L Osipov Acyclic Orders, Partition Schemes and CSPs



Partition Schemes

A partition scheme B is a set of binary relations over an infinite
domain D such that:

® Upep R = D? (jointly exhaustive).

m If Ry, Ry € B, then R; N Ry = () (pairwise disjoint).

m {(d,d) | d € D} € B (equality).

m If R € B, then {(b,a) | (a,b) € R} = R~! € B (inverses).
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Example 3: RCC-5

Objects of RCC-5 are (not necessarily connected) space regions.
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More Expressive Power

Let BY= contain unions of all relations in B.

Example

The relation DR U PO denoted by (DR, PO) contains pairs of
regions that are either disjoint or overlap. Constraint
(DR,PO)(X, Y) is logically equivalent to DR(X, Y) vV PO(X, Y).

BY= has more expressive power than B. However, CSP(BY~) is
usually computationally hard.
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Complexity Questions

For which partition schemes B is CSP(BY=) NP-hard?
How much time is required to solve CSP(BY~=)?

Are there better algorithms for some partition schemes 57
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An order < C D? is a binary relation.

m Irreflexive: 3d € D: d < d.

m Transitive: Vdy,ds,d3 : di < do AN dy < d3 — di < d;.
Acyclic: Ady, ..., dp:di <dy < -+ < djp_1 < dy, < dy.
m Total: Vdy,dy: di < dy V dy < dj.

m [rreflexive + transitive = strict partial = acyclic.

m Irreflexive + transitive + total = strict total.
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Hardness Conditions

Let < C D? be an acyclic order and M C D? be a relation.

(C1) (unbounded total orders)

Vke NJL C D: |L| > k and < is strict total on L.
(C2) (in-forks)

Va,b,c, a<b=<c,a<c¢, Idy: dyMa,d Mb di(<,>)c.
(C3) (out-forks)

Va,byc, a<b=<c,a< ¢, Ido: da(<,>)a,daMb,dyMe.
(C4) (no-forks)

Va,b,c, a<b=<c,a<c, Pd3: d3Ma,ds(<,>)b,d3 < c.

@4@5@ @4@9@ OO
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PP is an acyclic order (<). (DR,PO) is incomparability relation ().

A<B, B<C A=< C.
In-fork: DM A, DN B, D=< C.
Out-fork: A < D, B D, C< D.
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Main Theorem

Definition

Let H be the set of partition schemes B such that
(1) CSP(B) is in P, and
(2) B contains acyclic order < and relation M satisfying C1-C4.

Theorem

If B € H, then CSP(BY=) is NP-complete.

Peter Jonsson, Victor Lagerkv rge C ov Acyclic Orders, Partition Schemes and CSPs



Main Theorem

In CSP(BY=)-B each variable occurs in at most B constraints.

Theorem

If B € H, then CSP(BY=)-3 is NP-complete.

Peter Jonsson, Victor Lagerkvi rge Osipov Acyclic Orders, Partition Schemes and CSPs



Main Theorem

In CSP(BY=)-B each variable occurs in at most B constraints.

Theorem

If B € H, then CSP(BY=)-3 is NP-complete.
CSP(BY=)-2 is in P.
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Main Theorem

3-SAT asks whether a Boolean formula in 3-CNF is satisfiable:

(xl Vo V —hrg) VAN (—|:131 V —axp V :E4) VAN (—|:E2 VsV —|I4).

Exponential Time Hypothesis (ETH)

3-SAT is not solvable in subexponential time.

Theorem

If B € H, then CSP(BY=)-3 is not solvable in subexponential
time, unless the ETH fails.

Peter Jonsson, Victor L Osipov
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Proof Idea

3-NAE-SAT asks whether variables can be assigned values 0, 1
so that no clause contains all equal values.

(aVbVe)A(aVbVd)A(bV eV d).

If B € H, we can define a gadget G(a, b, ¢, 21, 22) which ensures
that (a < b < ¢) V (a = b= c¢). Define instance I of CSP(BY™):

Add the variable M to I

Peter Jonsson, Victor kvi ge Osipov Acyclic Orders, Partition Schemes and CSPs



Proof Idea

3-NAE-SAT asks whether variables can be assigned values 0, 1
so that no clause contains all equal values.

(aVbVe)A(aVbVd)A(bV eV d).

If B € H, we can define a gadget G(a, b, ¢, 21, 22) which ensures
that (a < b < ¢) V (a = b= c¢). Define instance I of CSP(BY™):

Add the variable M to I
For each variable a, add constraints a(<, >)M to L

Peter Jonsson, Victor kvi ge Osipov Acyclic Orders, Partition Schemes and CSPs



Proof Idea

3-NAE-SAT asks whether variables can be assigned values 0, 1
so that no clause contains all equal values.

(aVbVe)A(aVbVd)A(bV eV d).
If B € H, we can define a gadget G(a, b, ¢, 21, 22) which ensures
that (a < b < ¢) V (a = b= c¢). Define instance I of CSP(BY™):

Add the variable M to I

For each variable a, add constraints a(<, >)M to L
For each clause (aV bV ¢):

Peter Jonsson, Victor kvi ge Osipov Acyclic Orders, Partition Schemes and CSPs



Proof Idea
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Proof Idea

3-NAE-SAT asks whether variables can be assigned values 0, 1
so that no clause contains all equal values.

(aVbVe)A(aVbVd)A(bV eV d).

If B € H, we can define a gadget G(a, b, ¢, 21, 22) which ensures
that (a < b < ¢) V (a = b= c¢). Define instance I of CSP(BY™):

Add the variable M to I
For each variable a, add constraints a(<, >)M to L

For each clause (aV bV ¢):

add five variables z, x1, 22, 13, 74 to I;
add constraints a(=<, >=)b, b(<, )¢, a(<, )¢
add constraints G(a, M, z, 21, 22) and G(b, 2, ¢, x5, 24).
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Application: Allen’s Interval Algebra

[ Basic relation Example [ Endpoints |
z precedes y p XXX m<J Let = be p andl
y preceded by = p ! yyy Mbe A .
T meets y m XXXX =7 \ {p7 p }
y mot by = mT yyyy Cl) xxx ZZZ ...
z overlaps y o XXXX I <J < I_F’ ( ) yyy
y overl.-by z o T YYyy < Jt (C2) uuuuuu
z during y d XXX I~ >J,
y includes = d— T YYYyyyy m<Jt (CS) VVVVVV
z starts y s XXX I~ =J,
y started by z s T YYYYyyy < gt 4 I pratizd
z finishes y f XXX T = J+, (C )
y finished by z f~1 YYYYYYY I~ >J
z equals y = XXXX I~ =J,
yyyy =t
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Application: Unit Interval Algebra

[ Basic relation [ Example [ Endpoints
= precedes y p XXX m<J
y preceded by z p71 yyy
— meets y m XXXX ="
y met-by x m— 1 yyyy
z overlaps y o XXXX I <J < I+,
y overl.-by z o ! yyyy <t

T equals y XXXX I~

yyyy =gt

m Choosing < to be p does not work here.
m Instead, let < be o and M be (p,p~1).
m Conditions C1-C4 hold.
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Upper Bounds

Under ETH, if B € H, CSP(BY=) is not in 2°(" time.
Branching solves CSP(BY=)-B in 290" time for fixed B.
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Upper Bounds

m Under ETH, if B € H, CSP(BY=) is not in 2°( time.
Branching solves CSP(BY=)-B in 290" time for fixed B.
Branching solves CSP(BY=) in 20"") time.

m For ATA, UIA, RCC-8, RA, there is a 29187 algorithm.

m Open Question: Is there a tighter lower bound or an
improved algorithm for CSP(BY=)?
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