Acyclic Orders, Partition Schemes and CSPs Unified Hardness Proofs and Improved Algorithms

Peter Jonsson Victor Lagerkvist George Osipov

Linköping University

IJCAI 2021

- Many computational problems can be realized as CSPs with infinite domains over partition schemes.
- Applications in AI include formalisms for qualitative spatial and temporal reasoning: RCC-8, Allen's Interval Algebra, Rectangle Algebra, etc.
- Many CSPs over partition schemes are computationally hard.
- We provide sufficient conditions for hardness explaining many results in the literature in a uniform way.
- We show that even restricted to degree-bounded cases, such CSPs are unlikely to admit subexponential time algorithms.
- In special cases (e.g., RCC-8) we show that CSPs over partition schemes admit improved algorithms.

- Many computational problems can be realized as CSPs with infinite domains over partition schemes.
- Applications in AI include formalisms for qualitative spatial and temporal reasoning: RCC-8, Allen's Interval Algebra, Rectangle Algebra, etc.
- Many CSPs over partition schemes are computationally hard.
- We provide sufficient conditions for hardness explaining many results in the literature in a uniform way.
- We show that even restricted to degree-bounded cases, such CSPs are unlikely to admit subexponential time algorithms.
- In special cases (e.g., RCC-8) we show that CSPs over partition schemes admit improved algorithms.

- Many computational problems can be realized as CSPs with infinite domains over partition schemes.
- Applications in AI include formalisms for qualitative spatial and temporal reasoning: RCC-8, Allen's Interval Algebra, Rectangle Algebra, etc.
- Many CSPs over partition schemes are computationally hard.
- We provide sufficient conditions for hardness explaining many results in the literature in a uniform way.
- We show that even restricted to degree-bounded cases, such CSPs are unlikely to admit subexponential time algorithms.
- In special cases (e.g., RCC-8) we show that CSPs over partition schemes admit improved algorithms.

- Many computational problems can be realized as CSPs with infinite domains over partition schemes.
- Applications in AI include formalisms for qualitative spatial and temporal reasoning: RCC-8, Allen's Interval Algebra, Rectangle Algebra, etc.
- Many CSPs over partition schemes are computationally hard.
- We provide sufficient conditions for hardness explaining many results in the literature in a uniform way.
- We show that even restricted to degree-bounded cases, such CSPs are unlikely to admit subexponential time algorithms.
- In special cases (e.g., RCC-8) we show that CSPs over partition schemes admit improved algorithms.

- Many computational problems can be realized as CSPs with infinite domains over partition schemes.
- Applications in AI include formalisms for qualitative spatial and temporal reasoning: RCC-8, Allen's Interval Algebra, Rectangle Algebra, etc.
- Many CSPs over partition schemes are computationally hard.
- We provide sufficient conditions for hardness explaining many results in the literature in a uniform way.
- We show that even restricted to degree-bounded cases, such CSPs are unlikely to admit subexponential time algorithms.
- In special cases (e.g., RCC-8) we show that CSPs over partition schemes admit improved algorithms.

- Many computational problems can be realized as CSPs with infinite domains over partition schemes.
- Applications in AI include formalisms for qualitative spatial and temporal reasoning: RCC-8, Allen's Interval Algebra, Rectangle Algebra, etc.
- Many CSPs over partition schemes are computationally hard.
- We provide sufficient conditions for hardness explaining many results in the literature in a uniform way.
- We show that even restricted to degree-bounded cases, such CSPs are unlikely to admit subexponential time algorithms.
- In special cases (e.g., RCC-8) we show that CSPs over partition schemes admit improved algorithms.

CSP

Let \mathcal{B} be a set of binary relations over a domain D.

$CSP(\mathcal{B})$

Instance: A set of variables V and a set of constraints C of

form R(x, y), where $x, y \in V$ and $R \in \mathcal{B}$.

QUESTION: Is there an assignment $f: V \to D$ such that

 $(f(x), f(y)) \in R$ for all constraints R(x, y) in C?

If $(f(x), f(y)) \in R$, we say that assignment f satisfies R(x, y).

- $\bigcup_{R \in \mathcal{B}} R = D^2$ (jointly exhaustive).
- If $R_1, R_2 \in \mathcal{B}$, then $R_1 \cap R_2 = \emptyset$ (pairwise disjoint).
- $(d, d) \mid d \in D \in \mathcal{B} \text{ (equality)}.$
- If $R \in \mathcal{B}$, then $\{(b, a) \mid (a, b) \in R\} = R^{-1} \in \mathcal{B}$ (inverses).

- $\bigcup_{R \in \mathcal{B}} R = D^2$ (jointly exhaustive).
- If $R_1, R_2 \in \mathcal{B}$, then $R_1 \cap R_2 = \emptyset$ (pairwise disjoint).
- $(d, d) \mid d \in D \in \mathcal{B} \text{ (equality)}.$
- If $R \in \mathcal{B}$, then $\{(b, a) \mid (a, b) \in R\} = R^{-1} \in \mathcal{B}$ (inverses).

- $\bigcup_{R \in \mathcal{B}} R = D^2$ (jointly exhaustive).
- If $R_1, R_2 \in \mathcal{B}$, then $R_1 \cap R_2 = \emptyset$ (pairwise disjoint).
- $(d, d) \mid d \in D \in \mathcal{B} \text{ (equality)}.$
- If $R \in \mathcal{B}$, then $\{(b, a) \mid (a, b) \in R\} = R^{-1} \in \mathcal{B}$ (inverses).

- $\bigcup_{R \in \mathcal{B}} R = D^2$ (jointly exhaustive).
- If $R_1, R_2 \in \mathcal{B}$, then $R_1 \cap R_2 = \emptyset$ (pairwise disjoint).
- $(d, d) \mid d \in D \in \mathcal{B} \text{ (equality)}.$
- If $R \in \mathcal{B}$, then $\{(b, a) \mid (a, b) \in R\} = R^{-1} \in \mathcal{B}$ (inverses).

$$\langle \mathbb{Q}; =, \neq \rangle$$
.

- ✓ jointly exhaustive
- ✓ pairwise disjoint
- ✓ contains equality
- ✓ closed under taking converses

$$\langle \mathbb{Q}; =, \neq \rangle$$
.

- ✓ jointly exhaustive
- \checkmark pairwise disjoint
- ✓ contains equality
- √ closed under taking converses

$$\langle \mathbb{Q}; =, \neq \rangle$$
.

- ✓ jointly exhaustive
- \checkmark pairwise disjoint
- ✓ contains equality
- ✓ closed under taking converses

$$\langle \mathbb{Q}; =, \neq \rangle$$
.

- ✓ jointly exhaustive
- \checkmark pairwise disjoint
- ✓ contains equality
- ✓ closed under taking converses

 $\langle \mathbb{Q}; <, =, > \rangle$ aka Point Algebra.

- ✓ jointly exhaustive
- ✓ pairwise disjoint
- ✓ contains equality
- √ closed under taking converses

- $\langle \mathbb{Q}; <, =, > \rangle$ aka Point Algebra.
 - ✓ jointly exhaustive
 - \checkmark pairwise disjoint
 - ✓ contains equality
 - ✓ closed under taking converses

 $\langle \mathbb{Q}; <, =, > \rangle$ aka Point Algebra.

- ✓ jointly exhaustive
- \checkmark pairwise disjoint
- ✓ contains equality
- ✓ closed under taking converses

 $\langle \mathbb{Q}; <, =, > \rangle$ aka Point Algebra.

- ✓ jointly exhaustive
- \checkmark pairwise disjoint
- ✓ contains equality
- ✓ closed under taking converses

Example 3: RCC-5

Objects of RCC-5 are (not necessarily connected) space regions.

More Expressive Power

Let $\mathcal{B}^{\vee=}$ contain unions of all relations in \mathcal{B} .

Example

The relation $\mathsf{DR} \cup \mathsf{PO}$ denoted by $(\mathsf{DR}, \mathsf{PO})$ contains pairs of regions that are either disjoint or overlap. Constraint $(\mathsf{DR}, \mathsf{PO})(X, Y)$ is logically equivalent to $\mathsf{DR}(X, Y) \vee \mathsf{PO}(X, Y)$.

 $\mathcal{B}^{\vee=}$ has more expressive power than \mathcal{B} . However, $\mathrm{CSP}(\mathcal{B}^{\vee=})$ is usually computationally hard.

Complexity Questions

- I For which partition schemes \mathcal{B} is $CSP(\mathcal{B}^{\vee=})$ NP-hard?
- **2** How much time is required to solve $CSP(\mathcal{B}^{\vee=})$?
- 3 Are there better algorithms for *some* partition schemes \mathcal{B} ?

- Irreflexive: $\nexists d \in D : d \prec d$.
- Transitive: $\forall d_1, d_2, d_3 : d_1 \prec d_2 \land d_2 \prec d_3 \implies d_1 \prec d_3$.
- Acyclic: $\nexists d_1, \ldots, d_k : d_1 \prec d_2 \prec \cdots \prec d_{k-1} \prec d_k \prec d_1$.
- Total: $\forall d_1, d_2 : d_1 \prec d_2 \lor d_2 \prec d_1$.
- Irreflexive + transitive = strict partial \implies acyclic.
- Irreflexive + transitive + total = strict total.

- Irreflexive: $\nexists d \in D : d \prec d$.
- Transitive: $\forall d_1, d_2, d_3 : d_1 \prec d_2 \land d_2 \prec d_3 \implies d_1 \prec d_3$.
- Acyclic: $\nexists d_1, \ldots, d_k : d_1 \prec d_2 \prec \cdots \prec d_{k-1} \prec d_k \prec d_1$.
- Total: $\forall d_1, d_2 : d_1 \prec d_2 \lor d_2 \prec d_1$.
- Irreflexive + transitive = strict partial \implies acyclic.
- Irreflexive + transitive + total = strict total.

- Irreflexive: $\nexists d \in D : d \prec d$.
- Transitive: $\forall d_1, d_2, d_3 : d_1 \prec d_2 \land d_2 \prec d_3 \implies d_1 \prec d_3$.
- Acyclic: $\not\equiv d_1, \ldots, d_k : d_1 \prec d_2 \prec \cdots \prec d_{k-1} \prec d_k \prec d_1$.
- Total: $\forall d_1, d_2 : d_1 \prec d_2 \lor d_2 \prec d_1$.
- Irreflexive + transitive = strict partial \implies acyclic.
- Irreflexive + transitive + total = strict total.

- Irreflexive: $\nexists d \in D : d \prec d$.
- Transitive: $\forall d_1, d_2, d_3 : d_1 \prec d_2 \land d_2 \prec d_3 \implies d_1 \prec d_3$.
- Acyclic: $\nexists d_1, \ldots, d_k : d_1 \prec d_2 \prec \cdots \prec d_{k-1} \prec d_k \prec d_1$.
- Total: $\forall d_1, d_2 : d_1 \prec d_2 \lor d_2 \prec d_1$.
- Irreflexive + transitive = strict partial \implies acyclic.
- Irreflexive + transitive + total = strict total.

- Irreflexive: $\nexists d \in D : d \prec d$.
- Transitive: $\forall d_1, d_2, d_3 : d_1 \prec d_2 \land d_2 \prec d_3 \implies d_1 \prec d_3$.
- Acyclic: $\nexists d_1, \ldots, d_k : d_1 \prec d_2 \prec \cdots \prec d_{k-1} \prec d_k \prec d_1$.
- Total: $\forall d_1, d_2 : d_1 \prec d_2 \lor d_2 \prec d_1$.
- Irreflexive + transitive = strict partial \implies acyclic.
- Irreflexive + transitive + total = strict total.

- Irreflexive: $\nexists d \in D : d \prec d$.
- Transitive: $\forall d_1, d_2, d_3 : d_1 \prec d_2 \land d_2 \prec d_3 \implies d_1 \prec d_3$.
- Acyclic: $\nexists d_1, \ldots, d_k : d_1 \prec d_2 \prec \cdots \prec d_{k-1} \prec d_k \prec d_1$.
- Total: $\forall d_1, d_2 : d_1 \prec d_2 \lor d_2 \prec d_1$.
- Irreflexive + transitive = strict partial \implies acyclic.
- Irreflexive + transitive + total = strict total.

- (C1) (unbounded total orders) $\forall k \in \mathbb{N} \ \exists L \subset D : \ |L| \geq k \ \text{and} \ \prec \text{is strict total on} \ L.$
- (C2) (in-forks) $\forall a, b, c, \ a \prec b \prec c, a \prec c, \ \exists d_1 : \ d_1 \sqcap a, d_1 \sqcap b, d_1(\prec, \succ) c$
- (C3) (out-forks) $\forall a, b, c, \ a \prec b \prec c, a \prec c, \ \exists d_2: \ d_2(\prec, \succ)a, d_2 \sqcap b, d_2 \sqcap c$
- (C4) (no-forks) $\forall a, b, c, \ a \prec b \prec c, a \prec c, \ \nexists d_3: \ d_3 \sqcap a, d_3(\prec, \succ)b, d_3 \prec c.$

- (C1) (unbounded total orders) $\forall k \in \mathbb{N} \ \exists L \subset D : \ |L| \geq k \ \text{and} \ \prec \text{is strict total on} \ L.$
- (C2) (in-forks) $\forall a, b, c, \ a \prec b \prec c, a \prec c, \ \exists d_1: \ d_1 \sqcap a, d_1 \sqcap b, d_1(\prec, \succ) c.$
- (C3) (out-forks) $\forall a, b, c, \ a \prec b \prec c, a \prec c, \ \exists d_2: \ d_2(\prec, \succ) a, d_2 \sqcap b, d_2 \sqcap c$
- (C4) (no-forks) $\forall a, b, c, \ a \prec b \prec c, a \prec c, \not \exists d_3: \ d_3 \sqcap a, d_3(\prec, \succ)b, d_3 \prec c.$

- (C1) (unbounded total orders) $\forall k \in \mathbb{N} \ \exists L \subset D : \ |L| \geq k \ \text{and} \ \prec \text{is strict total on} \ L.$
- (C2) (in-forks) $\forall a, b, c, \ a \prec b \prec c, a \prec c, \ \exists d_1 : \ d_1 \sqcap a, d_1 \sqcap b, d_1(\prec, \succ) c.$
- (C3) (out-forks) $\forall a, b, c, \ a \prec b \prec c, a \prec c, \ \exists d_2: \ d_2(\prec, \succ) a, d_2 \sqcap b, d_2 \sqcap c.$
- (C4) (no-forks) $\forall a,b,c,\ a \prec b \prec c, a \prec c, \ \nexists d_3: \ d_3 \sqcap a, d_3(\prec,\succ)b, d_3 \prec c$

- (C1) (unbounded total orders) $\forall k \in \mathbb{N} \ \exists L \subset D : \ |L| \geq k \ \text{and} \ \prec \text{is strict total on} \ L.$
- (C2) (in-forks) $\forall a, b, c, \ a \prec b \prec c, a \prec c, \ \exists d_1 : \ d_1 \sqcap a, d_1 \sqcap b, d_1(\prec, \succ) c.$
- (C3) (out-forks) $\forall a, b, c, \ a \prec b \prec c, a \prec c, \ \exists d_2: \ d_2(\prec, \succ) a, d_2 \sqcap b, d_2 \sqcap c.$
- (C4) (no-forks) $\forall a, b, c, \ a \prec b \prec c, a \prec c, \ \nexists d_3: \ d_3 \sqcap a, d_3(\prec, \succ)b, d_3 \prec c.$

RCC-5

PP is an acyclic order (\prec). (DR,PO) is incomparability relation (\sqcap).

 $A \prec B, B \prec C, A \prec C.$

In-fork: $D \sqcap A$, $D \sqcap B$, $D \prec C$. Out-fork: $A \prec D$, $B \sqcap D$, $C \prec D$.

Main Theorem

Definition

Let \mathcal{H} be the set of partition schemes \mathcal{B} such that

- (1) $CSP(\mathcal{B})$ is in P, and
- (2) $\mathcal B$ contains a cyclic order \prec and relation \sqcap satisfying C1-C4.

Theorem

If $\mathcal{B} \in \mathcal{H}$, then $CSP(\mathcal{B}^{\vee=})$ is NP-complete.

Main Theorem

In $CSP(\mathcal{B}^{\vee=})$ -B each variable occurs in at most B constraints.

Theorem

If $\mathcal{B} \in \mathcal{H}$, then $CSP(\mathcal{B}^{\vee=})$ -3 is NP-complete.

 $CSP(\mathcal{B}^{\vee=})$ -2 is in P.

Main Theorem

In $CSP(\mathcal{B}^{\vee=})$ -B each variable occurs in at most B constraints.

Theorem

If $\mathcal{B} \in \mathcal{H}$, then $CSP(\mathcal{B}^{\vee=})$ -3 is NP-complete.

 $CSP(\mathcal{B}^{\vee=})$ -2 is in P.

Main Theorem

3-SAT asks whether a Boolean formula in 3-CNF is satisfiable:

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor x_4) \land (\neg x_2 \lor x_3 \lor \neg x_4).$$

Exponential Time Hypothesis (ETH)

3-SAT is not solvable in subexponential time.

Theorem

If $\mathcal{B} \in \mathcal{H}$, then $CSP(\mathcal{B}^{\vee=})$ -3 is not solvable in subexponential time, unless the ETH fails.

3-NAE-SAT asks whether variables can be assigned values 0, 1 so that no clause contains all equal values.

$$(a \lor b \lor c) \land (a \lor b \lor d) \land (b \lor c \lor d).$$

- \blacksquare Add the variable M to I.
- 2 For each variable a, add constraints $a(\prec, \succ)M$ to I.
- \blacksquare For each clause $(a \lor b \lor c)$:
 - a add five variables z, x_1, x_2, x_3, x_4 to I;
 - $add constraints a(\prec, \succ) b, b(\prec, \succ) c, a(\prec, \succ) c;$
 - add constraints $G(a, M, z, x_1, x_2)$ and $G(b, z, c, x_3, x_4)$.

3-NAE-SAT asks whether variables can be assigned values 0, 1 so that no clause contains all equal values.

$$(a \lor b \lor c) \land (a \lor b \lor d) \land (b \lor c \lor d).$$

- \blacksquare Add the variable M to I.
- **2** For each variable a, add constraints $a(\prec, \succ)M$ to I.
- **3** For each clause $(a \lor b \lor c)$:
 - a add five variables z, x_1, x_2, x_3, x_4 to I;
 - $add constraints a(\prec, \succ) b, b(\prec, \succ) c, a(\prec, \succ) c;$
 - add constraints $G(a, M, z, x_1, x_2)$ and $G(b, z, c, x_3, x_4)$.

3-NAE-SAT asks whether variables can be assigned values 0, 1 so that no clause contains all equal values.

$$(a \lor b \lor c) \land (a \lor b \lor d) \land (b \lor c \lor d).$$

- \blacksquare Add the variable M to I.
- **2** For each variable a, add constraints $a(\prec, \succ)M$ to I.
- **3** For each clause $(a \lor b \lor c)$:
 - a add five variables z, x_1, x_2, x_3, x_4 to I;
 - **b** add constraints $a(\prec, \succ)b$, $b(\prec, \succ)c$, $a(\prec, \succ)c$;
 - add constraints $G(a, M, z, x_1, x_2)$ and $G(b, z, c, x_3, x_4)$

3-NAE-SAT asks whether variables can be assigned values 0, 1 so that no clause contains all equal values.

$$(a \lor b \lor c) \land (a \lor b \lor d) \land (b \lor c \lor d).$$

- \blacksquare Add the variable M to I.
- **2** For each variable a, add constraints $a(\prec, \succ)M$ to I.
- **3** For each clause $(a \lor b \lor c)$:
 - a add five variables z, x_1, x_2, x_3, x_4 to I;
 - **b** add constraints $a(\prec, \succ)b$, $b(\prec, \succ)c$, $a(\prec, \succ)c$;
 - add constraints $G(a, M, z, x_1, x_2)$ and $G(b, z, c, x_3, x_4)$

3-NAE-SAT asks whether variables can be assigned values 0, 1 so that no clause contains all equal values.

$$(a \lor b \lor c) \land (a \lor b \lor d) \land (b \lor c \lor d).$$

- \blacksquare Add the variable M to I.
- **2** For each variable a, add constraints $a(\prec, \succ)M$ to I.
- **3** For each clause $(a \lor b \lor c)$:
 - a add five variables z, x_1, x_2, x_3, x_4 to I;
 - **b** add constraints $a(\prec, \succ)b$, $b(\prec, \succ)c$, $a(\prec, \succ)c$;
 - add constraints $G(a, M, z, x_1, x_2)$ and $G(b, z, c, x_3, x_4)$.

3-NAE-SAT asks whether variables can be assigned values 0, 1 so that no clause contains all equal values.

$$(a \lor b \lor c) \land (a \lor b \lor d) \land (b \lor c \lor d).$$

- \blacksquare Add the variable M to I.
- **2** For each variable a, add constraints $a(\prec, \succ)M$ to I.
- **3** For each clause $(a \lor b \lor c)$:
 - a add five variables z, x_1, x_2, x_3, x_4 to I;
 - **b** add constraints $a(\prec, \succ)b$, $b(\prec, \succ)c$, $a(\prec, \succ)c$;
 - add constraints $G(a, M, z, x_1, x_2)$ and $G(b, z, c, x_3, x_4)$.

Application: Allen's Interval Algebra

Basic relation		Example	Endpoints
x precedes y	р	xxx	$I^{+} < J^{-}$
y preceded by x	p-1	ууу	
x meets y	m	xxxx	$I^+ = J^-$
y met-by x	m^{-1}	уууу	
x overlaps y	0	xxxx	$I^- < J^- < I^+,$
y overlby x	o ⁻¹	уууу	$I^+ < J^+$
x during y	d	xxx	$I^{-} > J^{-}$,
y includes x	d^{-1}	ууууууу	$I^{+} < J^{+}$
x starts y	s	xxx	$I^{-} = J^{-},$
y started by x	s ⁻¹	ууууууу	$I^{+} < J^{+}$
x finishes y	f	xxx	$I^+ = J^+,$
y finished by x	f ⁻ 1	ууууууу	$I^{-} > J^{-}$
x equals y	=	xxxx	$I^{-} = J^{-},$
		уууу	$I^+ = J^+$

Let \prec be p and \sqcap be $\mathcal{A} \setminus \{p, p^{-1}\}$. (C1) xxx yyy zzz ... (C2) uuuuuu

(C3) vvvvv

(C4) www ww

Application: Unit Interval Algebra

Basic relation		Example	Endpoints
x precedes y	р	xxx	$I^{+} < J^{-}$
y preceded by x	p^{-1}	ууу	
x meets y	m	xxxx	$I^+ = J^-$
y met-by x	m-1	уууу	
x overlaps y	0	xxxx	$I^- < J^- < I^+,$
y overlby x	o^{-1}	уууу	$I^+ < J^+$
x equals y	=	xxxx	$I^{-} = J^{-},$
		уууу	$I^+ = J^+$

- Choosing \prec to be p does not work here.
- Instead, let \prec be o and \sqcap be (p, p^{-1}) .
- Conditions C1-C4 hold.

- Under ETH, if $\mathcal{B} \in \mathcal{H}$, $CSP(\mathcal{B}^{\vee=})$ is not in $2^{o(n)}$ time.
- Branching solves $CSP(\mathcal{B}^{\vee=})$ -B in $2^{O(n)}$ time for fixed B.
- Branching solves $CSP(\mathcal{B}^{\vee=})$ in $2^{O(n^2)}$ time.
- For AIA, UIA, RCC-8, RA, there is a $2^{O(n \log n)}$ algorithm.
- Open Question: Is there a tighter lower bound or an improved algorithm for $CSP(\mathcal{B}^{\vee=})$?

- Under ETH, if $\mathcal{B} \in \mathcal{H}$, $CSP(\mathcal{B}^{\vee=})$ is not in $2^{o(n)}$ time.
- Branching solves $CSP(\mathcal{B}^{\vee=})$ -B in $2^{O(n)}$ time for fixed B.
- Branching solves $CSP(\mathcal{B}^{\vee=})$ in $2^{O(n^2)}$ time.
- For AIA, UIA, RCC-8, RA, there is a $2^{O(n \log n)}$ algorithm.
- Open Question: Is there a tighter lower bound or an improved algorithm for $CSP(\mathcal{B}^{\vee=})$?

- Under ETH, if $\mathcal{B} \in \mathcal{H}$, $CSP(\mathcal{B}^{\vee=})$ is not in $2^{o(n)}$ time.
- Branching solves $CSP(\mathcal{B}^{\vee=})$ -B in $2^{O(n)}$ time for fixed B.
- Branching solves $CSP(\mathcal{B}^{\vee=})$ in $2^{O(n^2)}$ time.
- For AIA, UIA, RCC-8, RA, there is a $2^{O(n \log n)}$ algorithm.
- Open Question: Is there a tighter lower bound or an improved algorithm for $CSP(\mathcal{B}^{\vee=})$?

- Under ETH, if $\mathcal{B} \in \mathcal{H}$, $CSP(\mathcal{B}^{\vee=})$ is not in $2^{o(n)}$ time.
- Branching solves $CSP(\mathcal{B}^{\vee=})$ -B in $2^{O(n)}$ time for fixed B.
- Branching solves $CSP(\mathcal{B}^{\vee=})$ in $2^{O(n^2)}$ time.
- For AIA, UIA, RCC-8, RA, there is a $2^{O(n \log n)}$ algorithm.
- Open Question: Is there a tighter lower bound or an improved algorithm for $CSP(\mathcal{B}^{\vee=})$?

- Under ETH, if $\mathcal{B} \in \mathcal{H}$, $CSP(\mathcal{B}^{\vee=})$ is not in $2^{o(n)}$ time.
- Branching solves $CSP(\mathcal{B}^{\vee=})$ -B in $2^{O(n)}$ time for fixed B.
- Branching solves $CSP(\mathcal{B}^{\vee=})$ in $2^{O(n^2)}$ time.
- For AIA, UIA, RCC-8, RA, there is a $2^{O(n \log n)}$ algorithm.
- Open Question: Is there a tighter lower bound or an improved algorithm for $CSP(\mathcal{B}^{\vee=})$?

- Under ETH, if $\mathcal{B} \in \mathcal{H}$, $CSP(\mathcal{B}^{\vee=})$ is not in $2^{o(n)}$ time.
- Branching solves $CSP(\mathcal{B}^{\vee=})$ -B in $2^{O(n)}$ time for fixed B.
- Branching solves $CSP(\mathcal{B}^{\vee=})$ in $2^{O(n^2)}$ time.
- For AIA, UIA, RCC-8, RA, there is a $2^{O(n \log n)}$ algorithm.
- Open Question: Is there a tighter lower bound or an improved algorithm for $CSP(\mathcal{B}^{\vee=})$?

- Under ETH, if $\mathcal{B} \in \mathcal{H}$, $CSP(\mathcal{B}^{\vee=})$ is not in $2^{o(n)}$ time.
- Branching solves $CSP(\mathcal{B}^{\vee=})$ -B in $2^{O(n)}$ time for fixed B.
- Branching solves $CSP(\mathcal{B}^{\vee=})$ in $2^{O(n^2)}$ time.
- For AIA, UIA, RCC-8, RA, there is a $2^{O(n \log n)}$ algorithm.
- Open Question: Is there a tighter lower bound or an improved algorithm for $CSP(\mathcal{B}^{\vee=})$?